opencv超广角图像融合

时间: 2023-10-22 10:09:13 浏览: 70
针对超广角图像融合,可以使用OpenCV中的stitching模块来实现。具体步骤包括:读入图像、特征提取、特征匹配、图像配准、图像融合等。其中,特征提取和匹配是关键步骤,可以使用SIFT、SURF、ORB等算法来实现。 以下是一个简单的示例代码: ```python import cv2 # 读入图像 img1 = cv2.imread('img1.jpg') img2 = cv2.imread('img2.jpg') # 创建Stitcher对象 stitcher = cv2.createStitcher() # 图像拼接 result, pano = stitcher.stitch([img1, img2]) # 显示结果 cv2.imshow('result', result) cv2.imshow('pano', pano) cv2.waitKey() cv2.destroyAllWindows() ```
相关问题

opencv 图像拼接和融合

以下是使用OpenCV进行图像拼接和融合的步骤: 1. 特征点提取:使用ORB和SURF等算法提取两张图片中的特征点。 2. 特征点匹配:使用OpenCV提供的特征点匹配算法,如FLANN或Brute-Force等,将两张图片中的特征点进行匹配。 3. 图像配准:通过计算匹配的特征点之间的变换矩阵,将两张图片进行配准,使它们在同一坐标系下对齐。 4. 图像拼接:将两张图片进行拼接,可以使用OpenCV提供的拼接函数,如cv2.stitcher或cv2.createStitcher等。 5. 图像融合:将拼接后的图像进行融合,可以使用OpenCV提供的图像融合函数,如cv2.addWeighted等。 以下是一个使用ORB算法进行图像拼接和融合的Python代码示例: ```python import cv2 # 读取两张图片 img1 = cv2.imread('image1.jpg') img2 = cv2.imread('image2.jpg') # 创建ORB特征点检测器 orb = cv2.ORB_create() # 在两张图片中分别检测特征点和描述符 kp1, des1 = orb.detectAndCompute(img1, None) kp2, des2 = orb.detectAndCompute(img2, None) # 使用Brute-Force算法进行特征点匹配 bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) matches = bf.match(des1, des2) # 将匹配的特征点按照距离进行排序 matches = sorted(matches, key=lambda x: x.distance) # 取前10个匹配的特征点 good_matches = matches[:10] # 获取匹配的特征点在两张图片中的坐标 src_pts = [kp1[m.queryIdx].pt for m in good_matches] dst_pts = [kp2[m.trainIdx].pt for m in good_matches] # 计算变换矩阵 M, mask = cv2.findHomography(np.float32(src_pts), np.float32(dst_pts), cv2.RANSAC, 5.0) # 将两张图片进行拼接 result = cv2.warpPerspective(img1, M, (img1.shape[1] + img2.shape[1], img1.shape[0])) result[0:img2.shape[0], 0:img2.shape[1]] = img2 # 将拼接后的图像进行融合 blend = cv2.addWeighted(result[:, :img1.shape[1]], 0.5, result[:, img1.shape[1]:], 0.5, 0) # 显示结果 cv2.imshow('Result', blend) cv2.waitKey(0) cv2.destroyAllWindows() ```

opencv红外可见光图像融合

OpenCV是一个开源的计算机视觉库,它提了丰富的图像处理和计算机视觉算法。红外可见光图像融合是指将红外图像和可见光图像进行融合,以提取出两种图像的有用信息,从而实现更好的图像分析和理解。 在OpenCV中,可以使用以下步骤进行红外可见光图像融合: 1. 加载红外图像和可见光图像:使用OpenCV的`imread`函数加载红外图像和可见光图像。 2. 图像预处理:对加载的图像进行预处理,例如调整大小、灰度化、直方图均衡化等操作,以便后续处理。 3. 特征提取:使用OpenCV提供的特征提取算法,如SIFT、SURF或ORB等,从红外图像和可见光图像中提取特征点。 4. 特征匹配:将红外图像和可见光图像的特征点进行匹配,找到对应的特征点对。 5. 图像融合:根据特征点对的位置关系,使用一定的融合算法将红外图像和可见光图像进行融合,生成融合后的图像。 6. 后处理:对融合后的图像进行后处理,如增强对比度、去噪等操作,以得到更好的结果。 7. 显示和保存:使用OpenCV的`imshow`函数显示融合后的图像,并使用`imwrite`函数保存图像。

相关推荐

最新推荐

recommend-type

opencv中图像叠加/图像融合/按位操作的实现

主要介绍了opencv中图像叠加/图像融合/按位操作的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
recommend-type

opencv2实现10张图像上下左右拼接融合

主要为大家详细介绍了opencv2实现10张图像上下左右拼接融合,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

python opencv 图像拼接的实现方法

高级图像拼接也叫作基于特征匹配的图像拼接,拼接时消去两幅图像相同的部分,实现拼接合成全景图。这篇文章主要介绍了python opencv 图像拼接,需要的朋友可以参考下
recommend-type

python opencv 实现对图像边缘扩充

今天小编就为大家分享一篇python opencv 实现对图像边缘扩充,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

opencv实现多张图像拼接

主要为大家详细介绍了opencv实现多张图像拼接功能,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Redis验证与连接:安装成功验证技巧

![Redis从入门到精通](https://img-blog.csdnimg.cn/6f39d0a2adc3456b96e804eb45032480.png) # 1. Redis安装与验证** ### 2.2 Redis验证方法 Redis验证可以通过以下方法进行: - **命令行验证:** - 打开终端,输入 `redis-cli` 命令进入 Redis 命令行。 - 输入 `ping` 命令,如果返回 "PONG",则表示 Redis 正在运行。 - **客户端验证:** - 使用 Redis 客户端(如 RedisInsight)连接到 Redis 服务器。
recommend-type

3、自定义一个函数int compareStr(char *p1, char *p2),实现两个字符串的比较。相等返回0,大于返回1,小于返回0;编写主函数main()来调用自定义函数完成测试。

下面是自定义的 `compareStr` 函数的代码实现: ```c #include <stdio.h> int compareStr(char *p1, char *p2) { while (*p1 && *p2 && (*p1 == *p2)) { p1++; p2++; } return (*p1 > *p2) - (*p1 < *p2); } int main() { char str1[100], str2[100]; int result; printf("请输入第一个字符串:");
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。