LSTM 实现 pytorch
时间: 2023-11-13 20:02:45 浏览: 113
LSTM是一种循环神经网络,它可以解决梯度弥散和梯度爆炸的问题。在Pytorch中,我们可以使用nn.LSTM()来实现LSTM模型。nn.LSTM()接受三个参数,分别是输入特征的维度、隐藏层的维度和LSTM的层数。在使用nn.LSTM()时,我们需要将输入数据转换成(batch_size, sequence_length, input_size)的形式,其中batch_size表示批次大小,sequence_length表示序列长度,input_size表示输入特征的维度。在LSTM模型中,我们还可以使用nn.LSTMCell()来实现单个LSTM单元。如果需要自己实现LSTM模型,可以参考文章引用中的内容。
相关问题
双向lstm的pytorch代码实现
双向LSTM在PyTorch中的代码实现如下:
```python
import torch
import torch.nn as nn
class BiLSTM(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, output_size):
super(BiLSTM, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True, bidirectional=True)
self.fc = nn.Linear(hidden_size*2, output_size)
def forward(self, x):
h0 = torch.zeros(self.num_layers*2, x.size(0), self.hidden_size).to(x.device)
c0 = torch.zeros(self.num_layers*2, x.size(0), self.hidden_size).to(x.device)
out, _ = self.lstm(x, (h0, c0))
out = self.fc(out[:, -1, :])
return out
```
这段代码实现了一个双向LSTM模型,包含了输入大小(input_size)、隐藏层大小(hidden_size)、层数(num_layers)和输出大小(output_size)等参数。在forward函数中,首先初始化了LSTM的初始隐藏状态h0和记忆状态c0,然后将输入序列x输入到LSTM中得到输出out,最后通过全连接层(fc)将最后一个时间步的隐藏状态映射到输出空间中。
以上就是双向LSTM的PyTorch代码实现。你可以根据具体的任务需求进行调整和修改。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* [Pytorch LSTM 代码解读及自定义双向 LSTM 算子](https://blog.csdn.net/kuweicai/article/details/118702575)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"]
- *2* [PyTorch搭建双向LSTM实现时间序列预测(负荷预测)](https://blog.csdn.net/Cyril_KI/article/details/124283845)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"]
- *3* [基于pytorch从头实现了单向,多层,双向LSTM,给出了完整使用代码,并与torch自带的LSTM进行了对比实验。](https://download.csdn.net/download/qq_43790749/82156403)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"]
[ .reference_list ]
LSTM代码 pytorch
LSTM是一种循环神经网络,它可以处理序列数据,并且在处理长序列时比传统的循环神经网络更有效。以下是基于pytorch实现的LSTM代码:
```python
import torch
import torch.nn as nn
class LSTM(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, batch_first=True):
super(LSTM, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=batch_first)
def forward(self, x):
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
out, _ = self.lstm(x, (h0, c0))
return out
```
这个代码实现了一个单向的LSTM模型,其中包含了输入大小,隐藏层大小和层数等参数。在forward函数中,我们首先初始化了LSTM的初始隐藏状态和细胞状态,然后将输入x传递给LSTM模型,最后返回输出out。
如果需要实现双向LSTM,只需要将nn.LSTM替换为nn.LSTMBiDirectional即可。
阅读全文