sklearn pca按列降维
时间: 2023-12-17 12:03:47 浏览: 84
sklearn中的PCA默认按列降维,即将每个特征作为一个维度进行降维处理。在PCA中,我们可以通过explained_variance_和explained_variance_ratio_来查看降维后每个新特征向量所带的信息量大小和占原始数据总信息量的百分比。其中,explained_variance_表示每个新特征向量上所带的信息量大小,而explained_variance_ratio_表示每个新特征向量所占的信息量占原始数据总信息量的百分比。
相关问题
sklearn主成分分析pca降维python代码
可以使用以下代码进行sklearn主成分分析pca降维:
```python
from sklearn.decomposition import PCA
import numpy as np
# 假设有m个样本,每个样本有n个特征
X = np.random.rand(m, n)
# 将数据标准化,使得每个特征的均值为0,方差为1
X = (X - np.mean(X, axis=0)) / np.std(X, axis=0)
# 初始化PCA,假设要将数据降到k维
pca = PCA(n_components=k)
# 进行PCA降维
X_pca = pca.fit_transform(X)
```
这段代码使用了sklearn库中的PCA类进行主成分分析降维,可以将m个样本的n个特征降到k维。在使用PCA进行降维前,需要将数据进行标准化,使得每个特征的均值为0,方差为1,这样可以保证主成分分析的结果更加准确。
sklearn pca降维
在sklearn中,PCA降维算法被包括在模块decomposition中。PCA的API文档为sklearn.decomposition.PCA,它提供了一些参数用于定制化降维过程,比如n_components用于指定降维后的维度数量,copy用于指定是否复制原始数据,whiten用于指定是否对数据进行白化处理等等。\[1\]
在实际应用中,我们可以使用sklearn的PCA模块来进行降维操作。降维的结果不一定都是好的,因此在解决实际问题时,我们需要同时计算降维前后的结果,并进行比较。降维后的数据是不可解释的,但不影响最终的计算结果。\[2\]
sklearn中的降维算法都被包括在decomposition模块中,这个模块本质上是一个矩阵分解模块。矩阵分解在过去的十年中取得了很大的进展,它可以应用于降维、深度学习、聚类分析、数据预处理、低维度特征学习、推荐系统、大数据分析等领域。因此,sklearn的PCA模块是一个非常强大和多功能的降维工具。\[3\]
#### 引用[.reference_title]
- *1* *2* [Sklearn - PCA数据降维](https://blog.csdn.net/taon1607/article/details/106842006)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
- *3* [使用Sklearn学习降维算法PCA和SVD](https://blog.csdn.net/qq_38163244/article/details/109237230)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文