多目标粒子群算法python
时间: 2023-09-01 15:13:27 浏览: 206
多目标粒子群算法(Multi-objective Particle Swarm Optimization,MOPSO)是一种用于解决多目标优化问题的进化算法。它基于粒子群优化算法(Particle Swarm Optimization,PSO)并进行了扩展。
以下是一个使用Python实现的简单多目标粒子群算法的示例代码:
```python
import numpy as np
class Particle:
def __init__(self, bounds):
self.position = np.random.uniform(bounds[0], bounds[1])
self.velocity = np.zeros_like(self.position)
self.best_position = self.position.copy()
class MOPSO:
def __init__(self, obj_func, num_particles, num_iterations, bounds):
self.obj_func = obj_func
self.num_particles = num_particles
self.num_iterations = num_iterations
self.bounds = bounds
def optimize(self):
swarm = [Particle(self.bounds) for _ in range(self.num_particles)]
global_best_position = None
for _ in range(self.num_iterations):
for particle in swarm:
# 更新粒子速度和位置
inertia_weight = 0.5
cognitive_weight = 2.0
social_weight = 2.0
random1 = np.random.random(size=len(particle.position))
random2 = np.random.random(size=len(particle.position))
particle.velocity = (inertia_weight * particle.velocity +
cognitive_weight * random1 * (particle.best_position - particle.position) +
social_weight * random2 * (global_best_position - particle.position))
particle.position += particle.velocity
# 限制粒子位置在指定范围内
particle.position = np.clip(particle.position, self.bounds[0], self.bounds[1])
# 更新粒子的最佳位置
if global_best_position is None or self.obj_func(particle.position) < self.obj_func(particle.best_position):
particle.best_position = particle.position.copy()
# 更新全局最佳位置
if global_best_position is None or self.obj_func(particle.position) < self.obj_func(global_best_position):
global_best_position = particle.position.copy()
return global_best_position
# 示例使用的目标函数,可以根据实际问题修改
def objective_function(x):
f1 = x[0]**2 + x[1]**2
f2 = (x[0] - 1)**2 + (x[1] - 1)**2
return f1, f2
# 设置算法参数并运行优化
num_particles = 50
num_iterations = 100
bounds = [np.array([-5, -5]), np.array([5, 5])]
mopso = MOPSO(objective_function, num_particles, num_iterations, bounds)
best_position = mopso.optimize()
print("Best position:", best_position)
print("Objective values:", objective_function(best_position))
```
以上代码只是一个简单的示例,实际应用中可能需要根据具体问题进行适当的调整和改进。希望对你有所帮助!如果还有其他问题,请随时提问。
阅读全文