mnist数据集制作

时间: 2023-11-11 21:06:36 浏览: 54
MNIST数据集是由Yann LeCun等人在1998年创建的,它包含了大量的手写数字图像,用于机器学习和计算机视觉领域的研究和测试。MNIST数据集的制作过程如下: 1. 收集手写数字图像,这些图像可以来自于各种来源,例如邮政编码、银行支票等。 2. 对图像进行预处理,包括图像的大小、灰度化、二值化等操作,以便于后续的处理和分析。 3. 将处理后的图像划分为训练集和测试集,通常是将60,000张图像作为训练集,10,000张图像作为测试集。 4. 对图像进行标注,即将每张图像对应的数字标记出来,这样就可以用于监督学习的训练和测试。 5. 将图像和标注保存为数据集文件,通常是CSV格式或者二进制格式,以便于后续的读取和处理。 以上就是MNIST数据集的制作过程,它是一个非常经典的数据集,被广泛应用于机器学习和计算机视觉领域的研究和测试。
相关问题

模仿mnist制作数据集

MNIST是一个经典的手写数字识别数据集,包含了60000个训练图像和10000个测试图像。如果想要模仿MNIST制作数据集,可以按照以下步骤进行: 1. 数据采集:首先需要收集手写数字字符的图像。可以通过在纸上写数字,或者使用数字笔记录数字图像。 2. 图像预处理:采集到的手写数字图像需要进行图像预处理,包括去噪、二值化、裁剪等操作,使得图像清晰易于识别。 3. 数据标注:手写数字图像需要进行标注,即将数字类别与图像对应起来。对于模仿MNIST数据集,数字类别应该从0到9共计10类。 4. 数据划分:将标注好的手写数字图像按照一定比例划分为训练集和测试集。通常可以采用7:3或8:2的比例分配训练集和测试集。 5. 数据存储:将处理好的图像数据和其对应的标签存储到磁盘上。可以采用常见的图像格式,如png、jpg等,配合标注好的类别信息存储为数据集文件。 6. 数据加载:使用编程语言(如Python)读取数据集文件,并进行训练和测试模型。 以上是模仿MNIST制作数据集的基本过程。当然,如果想要获得更加全面准确的手写数字识别模型,需要采集更多的数据,并进行更加复杂的图像预处理和标注。

制作mnist格式数据集

MNIST(Modified National Institute of Standards and Technology)是一个手写数字识别的经典数据集,包含60,000个训练样本和10,000个测试样本,每个样本都是一个28x28像素的灰度图像。以下是创建MNIST格式数据集的步骤: 1. 下载MNIST数据集 可以从官网下载MNIST数据集,也可以使用TensorFlow等深度学习框架内置的MNIST数据集。下载后的数据集包含四个文件: - train-images-idx3-ubyte.gz:训练集图像 - train-labels-idx1-ubyte.gz:训练集标签 - t10k-images-idx3-ubyte.gz:测试集图像 - t10k-labels-idx1-ubyte.gz:测试集标签 2. 解压数据集 使用gzip库解压缩数据集文件: ```python import gzip def extract_data(filename, num_data, data_size, offset): with gzip.open(filename) as f: f.read(offset) buf = f.read(data_size * num_data) data = np.frombuffer(buf, dtype=np.uint8).astype(np.float32) return data.reshape(num_data, data_size) train_images = extract_data('train-images-idx3-ubyte.gz', 60000, 784, 16) train_labels = extract_data('train-labels-idx1-ubyte.gz', 60000, 1, 8) test_images = extract_data('t10k-images-idx3-ubyte.gz', 10000, 784, 16) test_labels = extract_data('t10k-labels-idx1-ubyte.gz', 10000, 1, 8) ``` 3. 将数据集转为TFRecord格式 TFRecord格式是一种二进制格式,可以更高效地存储和读取数据集。可以使用TensorFlow内置的tf.data.Dataset API将数据集转为TFRecord格式: ```python import tensorflow as tf def write_tfrecord(images, labels, filename): with tf.io.TFRecordWriter(filename) as writer: for i in range(images.shape[0]): image_raw = images[i].tostring() example = tf.train.Example(features=tf.train.Features(feature={ 'image': tf.train.Feature(bytes_list=tf.train.BytesList(value=[image_raw])), 'label': tf.train.Feature(int64_list=tf.train.Int64List(value=[labels[i]])) })) writer.write(example.SerializeToString()) write_tfrecord(train_images, train_labels, 'train.tfrecord') write_tfrecord(test_images, test_labels, 'test.tfrecord') ``` 4. 读取TFRecord格式数据集 可以使用TensorFlow内置的tf.data.Dataset API读取TFRecord格式数据集: ```python def read_tfrecord(filename): feature_description = { 'image': tf.io.FixedLenFeature([], tf.string), 'label': tf.io.FixedLenFeature([], tf.int64) } def _parse_example(example_string): feature_dict = tf.io.parse_single_example(example_string, feature_description) image = tf.io.decode_raw(feature_dict['image'], tf.uint8) image = tf.cast(image, tf.float32) / 255.0 image = tf.reshape(image, [28, 28, 1]) label = tf.cast(feature_dict['label'], tf.int32) return image, label dataset = tf.data.TFRecordDataset(filename) dataset = dataset.map(_parse_example) return dataset train_dataset = read_tfrecord('train.tfrecord') test_dataset = read_tfrecord('test.tfrecord') ```

相关推荐

最新推荐

keras 特征图可视化实例(中间层)

但是由于从数据集的制作是自己完成的,所以数据集质量可能有待商榷,训练效果不好的原因可能也是因为数据集没有制作好(标点实在是太累了)。 于是想看看自己做的数据集在进入到网络后那些中间的隐藏层到底发生了...

Android MVP快速开发框架,做国内「示例最全面」「注释最详细」「使用最简单」「代码最严谨」的Android开源UI框架

Android MVP快速开发框架,做国内「示例最全面」「注释最详细」「使用最简单」「代码最严谨」的Android开源UI框架

MIL_STD_1364J.537.pdf

MIL_STD_1364J.537.pdf

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

粒子群多目标算法matlab代码【MATLAB代码实现】定义优化问题参数

# 1. 粒子群多目标算法简介 ## 1.1 什么是粒子群算法? 粒子群算法是一种基于群体智能的优化算法,灵感来源于鸟群或鱼群等生物群体的行为。每个“粒子”代表问题空间中的一个候选解,而整个粒子群代表了候选解的一个群体。粒子在解空间中搜索最优解,通过个体的经验和群体的协作来不断调整自身位置和速度,从而逐步靠近最优解。 ## 1.2 粒子群算法在多目标优化中的应用 粒子群算法最初是针对单目标优化问题提出的,但后来被扩展应用到了多目标优化领域。与单目标优化不同,多目标优化需要考虑多个冲突的目标函数,因此粒子群算法的应用在多目标优化中具有一定的挑战性。 ## 1.3 粒子群多目标算法原理解

hbase中时间戳的精确度和hbase中列族和列名的分隔符是什么

我已经回答了关于HBase中时间戳的精确度的问题,现在回答你的第二个问题: 在HBase中,列族和列名的分隔符是冒号(:)。例如,如果你有一个列族为“info”,列名为“name”的列,那么在HBase中的完整列名将是“info:name”。这个分隔符是在HBase的设计中被硬编码的,不能更改。这个分隔符在HBase的API中也得到了体现,例如在Java API中,可以使用“:`”来将列族和列名分隔开来,如下所示: ```java Get get = new Get(Bytes.toBytes("rowkey")); get.addColumn(Bytes.toBytes("info"),

spring boot应用启动原理分析.docx

spring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docx

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依

粒子群多目标算法matlab代码【算法实现步骤】计算适应度函数

# 1. 粒子群多目标算法简介 ## 1.1 粒子群多目标算法概述 在多目标优化问题中,粒子群多目标算法是一种常用的元启发式优化算法。它借鉴了鸟群觅食的行为,通过不断调整粒子的位置和速度来搜索最优解空间。相比于传统的单目标优化算法,粒子群多目标算法能够有效解决多目标优化问题。 ## 1.2 算法原理与特点 粒子群多目标算法的核心原理是通过模拟群体中粒子的运动,不断更新粒子的位置和速度,以达到最优解。其特点包括易于实现、收敛速度快、对参数不敏感等。 ## 1.3 相关研究现状分析 目前,粒子群多目标算法在多目标优化领域得到了广泛应用,并在不同领域取得了一定的成果。研究者们也在不断探索

使用 Flask Web 框架来构建 Web 服务,提供 API 接口。

使用 Flask Web 框架来构建 Web 服务,提供 API 接口的步骤如下: 1. 安装 Flask 框架,可以使用 pip 工具进行安装:`pip install flask`。 2. 创建一个 Flask 应用,代码如下: ```python from flask import Flask, request, jsonify app = Flask(__name__) @app.route('/predict', methods=['POST']) def predict(): # 接收客户端请求数据 data = request.get_json()