改进逻辑回归 python代码
时间: 2023-11-16 14:56:59 浏览: 61
可以通过引入多项式特征、交互特征、组合特征等方法来改进逻辑回归模型,从而处理非线性的分类问题。具体来说,可以通过特征工程的方式将原始特征进行变换,以引入非线性关系。例如,可以通过添加多项式特征,将原始特征的高阶项加入到模型中,例如原始特征的平方项、立方项等。还可以引入交互特征,将不同特征之间的乘积或分割点(例如,做差或做除)作为新的特征。通过引入这些非线性特征,逻辑回归可以更好地捕捉到数据中的非线性关系,从而能够更好地分类非线性可分的数据。需要注意的是,在引入非线性特征时,可能需要进行正则化或其他模型调优技巧,以避免过拟合问题。
以下是一个使用sklearn库实现改进逻辑回归的Python代码示例:
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import make_pipeline
from sklearn.metrics import accuracy_score
# 生成数据集
np.random.seed(0)
X = np.random.randn(100, 2)
y = np.logical_xor(X[:, 0] > 0, X[:, 1] > 0)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 创建多项式逻辑回归模型
model = make_pipeline(PolynomialFeatures(degree=2), LogisticRegression())
# 训练模型
model.fit(X_train, y_train)
# 预测测试集
y_pred = model.predict(X_test)
# 计算预测准确率
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)
阅读全文