基于高斯过程的贝叶斯优化python代码
时间: 2023-11-13 08:12:36 浏览: 228
以下是基于高斯过程的贝叶斯优化的Python代码示例:
```python
import numpy as np
from scipy.stats import norm
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import ConstantKernel, Matern
def acquisition_function(x, X_sample, Y_sample, gpr, xi=0.01):
mu, sigma = gpr.predict(x.reshape(1, -1), return_std=True)
mu_sample = Y_sample.max()
with np.errstate(divide='warn'):
imp = mu - mu_sample - xi
Z = imp / sigma
ei = imp * norm.cdf(Z) + sigma * norm.pdf(Z)
ei[sigma == 0.0] = 0.0
return -ei[0]
def bayesian_optimization(n_iters, sample_loss, bounds):
X = []
Y = []
for i in range(n_iters):
if i == 0:
X_sample = np.array([[np.random.uniform(x[0], x[1])] for x in bounds])
else:
X_sample = np.array(X)
Y_sample = np.array(Y)
kernel = ConstantKernel(1.0) * Matern(length_scale=1.0)
gpr = GaussianProcessRegressor(kernel=kernel, alpha=0.01, n_restarts_optimizer=25, normalize_y=True)
gpr.fit(X_sample, Y_sample)
x_next = None
y_next = None
max_acq = -1
n_points = 10000
X_points = np.zeros((n_points, len(bounds)))
for j, (a, b) in enumerate(bounds):
X_points[:, j] = np.random.uniform(a, b, n_points)
for x in X_points:
acq = acquisition_function(x, X_sample, Y_sample, gpr)
if acq > max_acq:
x_next = x
max_acq = acq
y_next = sample_loss(x_next)
X.append(x_next)
Y.append(y_next)
return X, Y
```
其中,`acquisition_function`函数计算采样点的期望改进值(expected improvement),用于优化过程中选择下一个采样点。`bayesian_optimization`函数实现了贝叶斯优化的主要逻辑,包括随机初始化、高斯过程回归、期望改进值计算和下一个采样点的选择。最终返回优化得到的采样点和相应的函数值。需要注意的是,这里的损失函数应该是一个黑盒函数,无法直接求导,因此使用高斯过程回归来近似估计函数的值和方差,进而计算期望改进值。
阅读全文