用py编程代码示例实现, 语义分割任务 编程完成一个基于深度学习的图象语义分割任务的训练,完成预测、评估等。选取至少10张图片,输出预测结果,并分析结果。 需要一个具体的代码示例
时间: 2024-10-17 14:03:25 浏览: 38
在Python中,我们通常会使用深度学习库如TensorFlow或PyTorch来实现图像语义分割任务。这里我将给出一个使用Keras和U-Net模型的基本例子,因为U-Net是一个常用于语义分割的经典的卷积神经网络架构。
首先,确保已经安装了以下库:
```bash
pip install tensorflow keras_segmentation scikit-image
```
以下是简单的U-Net模型训练和预测的代码示例:
```python
import tensorflow as tf
from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, Input, concatenate
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
from skimage.io import imread, imshow, concatenate_images
from skimage.transform import resize
from sklearn.model_selection import train_test_split
from keras_segmentation.utils.train_utils import get_batches
# 加载数据集(假设你已经有了训练和验证图像及对应的标签)
train_image_dir = 'path/to/train/images'
train_mask_dir = 'path/to/train/masks'
val_image_dir = 'path/to/validation/images'
val_mask_dir = 'path/to/validation/masks'
# 加载并预处理图像和标签
def load_data(image_dir, mask_dir):
images = []
masks = []
for img_name in os.listdir(image_dir):
img_path = os.path.join(image_dir, img_name)
mask_path = os.path.join(mask_dir, img_name.replace('.jpg', '.png'))
image = imread(img_path)
mask = imread(mask_path)
# 将图像和mask调整到相同的尺寸(例如256x256)
image, mask = resize((image, mask), (256, 256))
images.append(image)
masks.append(mask)
return np.array(images), np.array(masks)
# 准备训练数据
X_train, y_train = load_data(train_image_dir, train_mask_dir)
X_val, y_val = load_data(val_image_dir, val_mask_dir)
# 定义U-Net模型
input_shape = X_train.shape[1:]
inputs = Input(input_shape)
down_stack = [
Downsample(32, 3, activation='relu'), # 第一层
Downsample(64, 3, activation='relu'), # 第二层
Downsample(128, 3, activation='relu'), # 第三层
Downsample(256, 3, activation='relu'), # 第四层
]
up_stack = [
Upsample(128, 2, activation='relu'), # 第五层
Upsample(64, 2, activation='relu'), # 第六层
Upsample(32, 2, activation='relu'), # 第七层
Conv2D(1, 1, activation='sigmoid') # 输出层
]
# 构建模型
x = inputs
skip_connections = []
for down in down_stack:
x = down(x)
skip_connections.append(x)
skip_connections = reversed(skip_connections[:-1])
for up, skip in zip(up_stack, skip_connections):
x = up(x)
x = concatenate([x, skip], axis=-1)
outputs = x
model = Model(inputs=inputs, outputs=outputs)
model.compile(optimizer=Adam(lr=1e-4), loss=tf.keras.losses.BinaryCrossentropy(), metrics=['accuracy'])
# 训练模型
epochs = 10
batch_size = 8
model.fit(
get_batches(X_train, y_train, batch_size),
validation_data=get_batches(X_val, y_val, batch_size),
epochs=epochs,
verbose=1
)
# 预测
test_image_dir = 'path/to/test/images'
test_image_names = os.listdir(test_image_dir)
predictions = []
for img_name in test_image_names:
img_path = os.path.join(test_image_dir, img_name)
img = imread(img_path)
img = resize(img, (256, 256))
pred = model.predict(np.expand_dims(img, axis=0))
predictions.append(pred[0])
# 分析结果
# 可能需要额外的库如matplotlib展示每个预测的分割结果
imshow(combined_image)
imshow(prediction, alpha=0.5)
plt.show()
阅读全文