python谷歌股票预测
时间: 2025-01-07 20:39:47 浏览: 6
### 使用Python实现谷歌股票价格预测模型
为了使用Python建立一个有效的谷歌股票价格预测模型,可以采用基于Transformer架构的方法。这涉及到几个关键步骤,包括环境配置、数据预处理、模型定义和训练过程。
#### 导入库并设置超参数
在开始之前,确保安装了必要的库,并设置了合适的超参数来控制输入窗口大小(input_window) 和输出窗口大小(output_window),这对于时间序列预测非常重要:
```python
import torch
import torch.nn as nn
import numpy as np
from sklearn.preprocessing import MinMaxScaler
import pandas as pd
torch.manual_seed(0)
np.random.seed(0)
input_window = 20 # 输入的时间步数
output_window = 1 # 预测未来多少天的价格
batch_size = 64 # 批量大小
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f'Using device: {device}')
```
这段代码初始化了一些基本变量,并选择了运行设备(GPU或CPU),同时也打印出了当前使用的计算资源[^1]。
#### 数据加载与预处理
对于金融市场的历史股价数据,通常会先对其进行标准化处理,以便更好地适应神经网络的学习特性。这里假设已经获取到了Google (GOOGL) 的收盘价作为目标列进行建模:
```python
data_path = './GOOGL.csv'
df = pd.read_csv(data_path)[['Close']]
scaler = MinMaxScaler(feature_range=(-1, 1))
scaled_data = scaler.fit_transform(df.values.reshape(-1, 1))
def create_inout_sequences(input_data, tw):
inout_seq = []
L = len(input_data)
for i in range(L-tw):
train_seq = input_data[i:i+tw]
train_label = input_data[i+output_window:i+tw+output_window]
inout_seq.append((train_seq ,train_label))
return inout_seq
inout_seq = create_inout_sequences(scaled_data, input_window)
```
上述脚本读取CSV文件中的`Close`字段,并通过MinMaxScaler将其缩放到[-1, 1]区间内;接着创建了一个函数create_inout_sequences用来生成适合于LSTM/Transformer结构的数据集格式。
#### 构建Transformer模型
接下来就是设计具体的Transformer层,这部分可以根据具体需求调整层数和其他细节参数:
```python
class TransformerModel(nn.Module):
def __init__(self, feature_size=1, num_layers=3, dropout=0.1):
super().__init__()
self.model_type = 'Transformer'
self.src_mask = None
self.pos_encoder = PositionalEncoding(feature_size, dropout)
encoder_layers = nn.TransformerEncoderLayer(d_model=feature_size, nhead=1)
self.transformer_encoder = nn.TransformerEncoder(encoder_layers, num_layers=num_layers)
self.decoder = nn.Linear(feature_size, 1)
initrange = 0.1
self.decoder.bias.data.zero_()
self.decoder.weight.data.uniform_(-initrange, initrange)
def forward(self, src):
if self.src_mask is None or self.src_mask.size(0) != len(src):
mask = generate_square_subsequent_mask(len(src)).to(src.device)
self.src_mask = mask
src = self.pos_encoder(src)
output = self.transformer_encoder(src, self.src_mask)
output = self.decoder(output)
return output
# 辅助类:位置编码器
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, max_len=5000):
super(PositionalEncoding, self).__init__()
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
self.dropout = nn.Dropout(p=dropout)
def forward(self, x):
x = x + self.pe[:x.size(0), :]
return self.dropout(x)
def generate_square_subsequent_mask(sz):
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
return mask
```
此部分实现了完整的Transformer框架,其中包括自注意力机制的位置编码组件PositionalEncoding以及整个变换器的核心逻辑。
#### 训练循环
最后一步是编写训练循环来进行模型优化:
```python
model = TransformerModel().to(device)
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
for epoch in range(epochs):
model.train()
total_loss = 0.
for data in get_batches(inout_seq, batch_size):
optimizer.zero_grad()
inputs, targets = zip(*data)
inputs = torch.stack(inputs).squeeze(dim=-1).permute(1, 0, 2).to(device)
targets = torch.tensor(targets).view(batch_size,-1).to(device)
outputs = model(inputs)
loss = criterion(outputs.view(-1), targets.view(-1))
loss.backward()
optimizer.step()
total_loss += loss.item()
avg_train_loss = total_loss / len(get_batches(inout_seq,batch_size))
print(f'| end of epoch {epoch:3d} | training loss {avg_train_loss:.4f}')
```
以上展示了如何利用PyTorch搭建并训练一个简单的Transformer模型用于股市行情分析的任务上。
阅读全文