yolov8测试fps代码
时间: 2023-09-29 13:07:38 浏览: 261
当然,这是一个使用YOLOv4模型测试FPS的示例代码:
```python
import cv2
import time
# 加载YOLOv4模型
net = cv2.dnn.readNet("yolov4.weights", "yolov4.cfg")
# 设置图像输入尺寸和归一化系数
inputWidth = 416
inputHeight = 416
scale = 1 / 255
# 获取输入层和输出层信息
layerNames = net.getLayerNames()
outputLayers = [layerNames[i[0] - 1] for i in net.getUnconnectedOutLayers()]
# 打开摄像头
cap = cv2.VideoCapture(0)
# 用于计算帧率的变量
start_time = time.time()
frame_count = 0
while True:
# 读取帧
ret, frame = cap.read()
if not ret:
break
# 构建一个blob,将帧传递给模型进行预测
blob = cv2.dnn.blobFromImage(frame, scale, (inputWidth, inputHeight), (0, 0, 0), True, crop=False)
net.setInput(blob)
outs = net.forward(outputLayers)
# 处理预测结果
# ...
# 绘制FPS信息
frame_count += 1
if (time.time() - start_time) > 1:
fps = frame_count / (time.time() - start_time)
start_time = time.time()
frame_count = 0
cv2.putText(frame, "FPS: {:.2f}".format(fps), (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
# 显示帧
cv2.imshow("YOLOv4", frame)
if cv2.waitKey(1) == ord('q'):
break
# 释放资源
cap.release()
cv2.destroyAllWindows()
```
请确保已经下载了YOLOv4的权重文件(`yolov4.weights`)和配置文件(`yolov4.cfg`),并将它们与上述代码放在同一目录下。你可以根据自己的需要进行修改和调整。
阅读全文