python word2vec
时间: 2023-10-12 09:04:54 浏览: 154
Word2Vec是一种用于计算词语相似度的算法。在使用Word2Vec之前,需要先加载预训练好的模型。可以通过gensim库中的models.word2vec.Word2Vec.load方法加载已经训练好的模型。
步骤2.1:获取某个词对应的词向量
首先,选择一个词语,比如"疫情",然后使用model.wv[word方法获取该词语的词向量。词向量表示了该词在向量空间中的位置,可以用于计算词语之间的相似度。
步骤2.2:计算两个词语的余弦相似度
接下来,可以使用model.wv.similarity方法计算两个词语的余弦相似度。比如,可以计算"疫情"和"新冠"两个词语的相似度,得到一个0到1之间的值,表示它们的相似程度。
步骤2.3:计算两个句子之间的相似度
除了计算两个词语之间的相似度,还可以使用model.wv.n_similarity方法计算两个句子(先进行分词)之间的相似度。可以将句子分词后,以列表形式传入该方法,它会返回一个表示相似度的单个值。例如,可以计算['电脑', '现在', '不贵']和['计算机', '便宜']两个句子之间的相似度。
另外,可以使用model.wv.most_similar方法查找与指定词语最相似的前n个词语。例如,可以查找与['中国', '华盛顿']最相似的前5个词语,可以通过传入positive参数表示与哪些词语相似,通过传入negative参数表示与哪些词语不相似,通过传入topn参数表示返回前n个结果。
所以,根据你的问题,可以根据上述步骤使用Word2Vec计算词语相似度和句子相似度。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* *3* [自然语言处理=======python利用word2vec实现计算词语相似度【gensim实现】](https://blog.csdn.net/qq_46906413/article/details/123808182)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"]
[ .reference_list ]
阅读全文