cars_15 = grouped_data.index.tolist()[:15] min_15 = grouped_data["min_price"].values.tolist()[:15] max_15 = grouped_data["max_price"].values.tolist()[:15] avg_15 = grouped_data["avg_price"].values.tolist()[:15] print(cars_15) print(min_15) print(max_15) print(avg_15)
时间: 2024-01-15 20:04:01 浏览: 74
您的代码是用来从 grouped_data 中提取前 15 个车型的名称、最低价格、最高价格和平均价格,并分别存储在 cars_15、min_15、max_15 和 avg_15 的列表中,然后打印出来。
请注意,这些列表是根据 grouped_data 中的顺序提取的,并不一定与排序后的结果相对应。
相关问题
grouped_data = data.groupby('month').sum().sort_index(ascending=True) cars_10 = grouped_data.index.tolist()[:10] count_10 = grouped_data["销量"].values.tolist()[:10] print(cars_10) print(count_10)
这段代码通过对数据进行分组、求和和排序,获取了按月份分组后的销量数据。首先,根据'month'列对数据进行分组,然后使用sum()函数对每个月份的销量进行求和。接着,使用sort_index()函数按照月份的升序对结果进行排序,并将结果赋值给grouped_data变量。
然后,通过grouped_data的index属性获取按照月份排序后的索引值,并使用tolist()函数将其转换为列表形式,取前10个月份,并将结果赋值给cars_10变量。
接着,通过grouped_data的["销量"]索引获取销量列,并使用tolist()函数将其转换为列表形式,取前10个销量值,并将结果赋值给count_10变量。
最后,通过print函数打印出cars_10和count_10的值,分别表示前10个月份和对应的销量。
grouped_data = df.groupby('厂商').sum().sort_values(by="销量",ascending=False) cars_10 = grouped_data.index.tolist()[:15] count_10 = grouped_data["销量"].values.tolist()[:15] print(cars_10) print(count_10)
这段代码使用了Pandas库来对数据进行分组、求和并按照销量进行降序排序。首先,根据'厂商'列对数据进行分组,然后使用sum()函数对每个厂商的销量进行求和。最后,使用sort_values()函数按照销量的降序对结果进行排序,并将结果赋值给grouped_data变量。
接着,通过grouped_data的index属性获取按照销量排序后的厂商索引值,并使用tolist()函数将其转换为列表形式,取前15个厂商,并将结果赋值给cars_10变量。
然后,通过grouped_data的["销量"]索引获取销量列,并使用tolist()函数将其转换为列表形式,取前15个销量值,并将结果赋值给count_10变量。
最后,通过print函数打印出cars_10和count_10的值,分别表示销量排名前15的厂商和对应的销量。
阅读全文