结合并联 Transformer 和残差 U-Net 网络的水下图像增强模型Python代码
时间: 2024-12-20 18:30:49 浏览: 6
合并Transformer和残差U-Net网络结构在水下图像增强中可以利用Transformer的全局上下文理解和残差U-Net的细节保留能力。以下是一个简化版的Python代码示例,使用PyTorch库来实现这种融合:
```python
import torch
import torch.nn as nn
class ResidualUNetBlock(nn.Module):
# 残差U-Net块
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1):
super().__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding)
self.relu = nn.ReLU()
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size, stride=stride, padding=padding)
def forward(self, x):
identity = x
x = self.conv1(x)
x = self.relu(x)
x = self.conv2(x)
return x + identity # 残差连接
class AttentionBlock(nn.Module):
# 自注意力块,类似Transformer编码器的一部分
def __init__(self, channels):
super().__init__()
self.channel_attention = nn.Sequential(
nn.Linear(channels, channels // 8),
nn.ReLU(),
nn.Linear(channels // 8, channels),
nn.Sigmoid()
)
self.spatial_attention = nn.Sequential(
nn.Conv2d(channels, 1, kernel_size=1),
nn.Sigmoid()
)
def forward(self, x):
b, c, _, _ = x.size()
channel_attn = self.channel_attention(x.view(b, c, -1)).view(b, c, 1, 1)
spatial_attn = self.spatial_attention(x)
combined_attn = channel_attn * spatial_attn
return x * combined_attn
# 合并网络
class CombinedModel(nn.Module):
def __init__(self, input_channels, num_classes, num_transformer_blocks=6):
super().__init__()
self.u_net = nn.Sequential(ResidualUNetBlock(input_channels, 32), ...) # 根据需要添加更多的层
self.transformer_encoder = nn.TransformerEncoderLayer(d_model=input_channels//4, nhead=8) # 调整通道数
self.transformer = nn.TransformerEncoder(self.transformer_encoder, num_transformer_blocks)
def forward(self, x):
u_net_out = self.u_net(x)
transformer_out = self.transformer(u_net_out.permute(0, 2, 1)) # 将输入从CHW转到HWC
fused_output = u_net_out + transformer_out.permute(0, 2, 1) # 再将特征图拼接
return fused_output
# 使用示例
model = CombinedModel(input_channels=3, num_classes=1) # 输入3通道,输出单通道
input_image = torch.randn(1, 3, 512, 512) # 假设输入大小为512x512
output = model(input_image)
```
阅读全文