faster rcnn 自己的数据集 目标检测 代码 教程

时间: 2023-09-09 19:02:06 浏览: 176
Faster R-CNN是一种常用的目标检测算法,可以用于检测图像中的目标物体。在使用Faster R-CNN进行目标检测时,我们需要自己准备一个数据集,以便训练模型识别我们关心的目标。 首先,我们需要收集一组带有标签的图像,标签可以是目标物体的边界框坐标和类别。收集到的图像应包含我们要检测的目标物体以及背景等其他物体。 接下来,我们需要为数据集标注目标物体的边界框和类别。可以使用标注工具手动标注或者借助一些自动标注工具。将标注结果保存为XML、JSON等格式。 然后,我们需要将数据集划分为训练集和测试集。训练集用于训练模型,测试集用于评估模型的性能。 接着,我们需要根据Faster R-CNN的代码教程进行模型训练。可以参考PyTorch官方提供的代码实现或者一些开源实现代码。在训练模型时,需要配置网络参数、学习率以及其他超参数,并加载准备好的数据集。 在训练过程中,模型将学习如何从图像中检测出我们关心的目标物体。通过调整模型的网络结构和参数,我们可以提高模型的检测精度。 最后,我们可以使用训练好的模型在新的图像上进行目标检测。将测试图像输入到模型中,模型将输出该图像中检测到的目标物体的位置和类别。 总结来说,使用Faster R-CNN进行目标检测,我们需要准备自己的数据集并进行标注,然后根据代码教程进行模型的训练和调优,最后使用训练好的模型进行目标检测。这个过程需要一定的编程能力和对深度学习模型的理解。
相关问题

faster rcnn训练自己数据集的代码

Faster R-CNN 是一种基于深度学习的目标检测算法,它可以用于训练自己的数据集。下面是 Faster R-CNN 训练自己数据集的代码示例: 1. 准备训练数据集 首先需要准备训练数据集,包括图像和标注文件。标注文件可以是 VOC 格式或 COCO 格式。 2. 安装依赖库和下载代码 需要安装 TensorFlow 和 Keras,以及下载 Faster R-CNN 的代码。 3. 修改配置文件 修改 Faster R-CNN 的配置文件,包括训练和测试的参数、数据集路径以及模型保存路径等。 4. 训练模型 运行训练代码,使用准备好的数据集进行训练,直到模型收敛或达到预设的训练轮数。 5. 测试模型 使用测试数据集对训练好的模型进行测试,评估模型的准确率和召回率等指标。 6. 模型优化 根据测试结果对模型进行优化,包括调整参数、增加数据集大小等。 参考代码: 以下是 Faster R-CNN 训练自己数据集的代码示例。这里以 TensorFlow 和 Keras 为例,代码中的数据集为 VOC 格式。 ```python # 导入依赖库 import tensorflow as tf from keras import backend as K from keras.layers import Input from keras.models import Model from keras.optimizers import Adam from keras.utils import plot_model from keras.callbacks import TensorBoard, ModelCheckpoint from keras_frcnn import config from keras_frcnn import data_generators from keras_frcnn import losses as losses_fn from keras_frcnn import roi_helpers from keras_frcnn import resnet as nn from keras_frcnn import visualize # 设置配置文件 config_output_filename = 'config.pickle' network = 'resnet50' num_epochs = 1000 output_weight_path = './model_frcnn.hdf5' input_weight_path = './resnet50_weights_tf_dim_ordering_tf_kernels.h5' tensorboard_dir = './logs' train_path = './train.txt' test_path = './test.txt' num_rois = 32 horizontal_flips = True vertical_flips = True rot_90 = True output_weight_path = './model_frcnn.hdf5' # 加载配置文件 config = config.Config() config_output_filename = 'config.pickle' # 加载数据集 all_imgs, classes_count, class_mapping = data_generators.get_data(train_path) test_imgs, _, _ = data_generators.get_data(test_path) # 计算平均像素值 if 'bg' not in classes_count: classes_count['bg'] = 0 class_mapping['bg'] = len(class_mapping) config.class_mapping = class_mapping # 计算平均像素值 C = config.num_channels mean_pixel = [103.939, 116.779, 123.68] img_size = (config.im_size, config.im_size) # 组装模型 input_shape_img = (None, None, C) img_input = Input(shape=input_shape_img) roi_input = Input(shape=(num_rois, 4)) shared_layers = nn.nn_base(img_input, trainable=True) # RPN 网络 num_anchors = len(config.anchor_box_scales) * len(config.anchor_box_ratios) rpn_layers = nn.rpn(shared_layers, num_anchors) # RoI 网络 classifier = nn.classifier(shared_layers, roi_input, num_rois, nb_classes=len(classes_count), trainable=True) model_rpn = Model(img_input, rpn_layers) model_classifier = Model([img_input, roi_input], classifier) # 加载权重 model_rpn.load_weights(input_weight_path, by_name=True) model_classifier.load_weights(input_weight_path, by_name=True) # 生成训练数据 data_gen_train = data_generators.get_anchor_gt(all_imgs, classes_count, C, K.image_dim_ordering(), mode='train', \ img_size=img_size, \ num_rois=num_rois, \ horizontal_flips=horizontal_flips, \ vertical_flips=vertical_flips, \ rot_90=rot_90) # 编译模型 optimizer = Adam(lr=1e-5) model_rpn.compile(optimizer=optimizer, loss=[losses_fn.rpn_loss_cls(num_anchors), losses_fn.rpn_loss_regr(num_anchors)]) model_classifier.compile(optimizer=optimizer, loss=[losses_fn.class_loss_cls, losses_fn.class_loss_regr(len(classes_count) - 1)], metrics={'dense_class_{}'.format(len(classes_count)): 'accuracy'}) # 训练模型 epoch_length = 1000 num_epochs = int(num_epochs) iter_num = 0 losses = np.zeros((epoch_length, 5)) rpn_accuracy_rpn_monitor = [] rpn_accuracy_for_epoch = [] start_time = time.time() best_loss = np.Inf class_mapping_inv = {v: k for k, v in class_mapping.items()} print('Starting training') for epoch_num in range(num_epochs): progbar = generic_utils.Progbar(epoch_length) print('Epoch {}/{}'.format(epoch_num + 1, num_epochs)) while True: try: if len(rpn_accuracy_rpn_monitor) == epoch_length and C.verbose: mean_overlapping_bboxes = float(sum(rpn_accuracy_rpn_monitor)) / len(rpn_accuracy_rpn_monitor) rpn_accuracy_rpn_monitor = [] print('Average number of overlapping bounding boxes from RPN = {} for {} previous iterations'.format(mean_overlapping_bboxes, epoch_length)) if mean_overlapping_bboxes == 0: print('RPN is not producing bounding boxes that overlap the ground truth boxes. Check RPN settings or keep training.') X, Y, img_data = next(data_gen_train) loss_rpn = model_rpn.train_on_batch(X, Y) P_rpn = model_rpn.predict_on_batch(X) R = roi_helpers.rpn_to_roi(P_rpn[0], P_rpn[1], C.image_dim_ordering(), use_regr=True, overlap_thresh=0.7, max_boxes=300) X2, Y1, Y2, IouS = roi_helpers.calc_iou(R, img_data, C, class_mapping) if X2 is None: rpn_accuracy_rpn_monitor.append(0) rpn_accuracy_for_epoch.append(0) continue # sampling positive/negative samples neg_samples = np.where(Y1[0, :, -1] == 1) pos_samples = np.where(Y1[0, :, -1] == 0) if len(neg_samples) > 0: neg_samples = neg_samples[0] else: neg_samples = [] if len(pos_samples) > 0: pos_samples = pos_samples[0] else: pos_samples = [] rpn_accuracy_rpn_monitor.append(len(pos_samples)) rpn_accuracy_for_epoch.append((len(pos_samples))) if C.num_rois > 1: if len(pos_samples) < C.num_rois // 2: selected_pos_samples = pos_samples.tolist() else: selected_pos_samples = np.random.choice(pos_samples, C.num_rois // 2, replace=False).tolist() try: selected_neg_samples = np.random.choice(neg_samples, C.num_rois - len(selected_pos_samples), replace=False).tolist() except: selected_neg_samples = np.random.choice(neg_samples, C.num_rois - len(selected_pos_samples), replace=True).tolist() sel_samples = selected_pos_samples + selected_neg_samples else: # in the extreme case where num_rois = 1, we pick a random pos or neg sample selected_pos_samples = pos_samples.tolist() selected_neg_samples = neg_samples.tolist() if np.random.randint(0, 2): sel_samples = random.choice(neg_samples) else: sel_samples = random.choice(pos_samples) loss_class = model_classifier.train_on_batch([X, X2[:, sel_samples, :]], [Y1[:, sel_samples, :], Y2[:, sel_samples, :]]) losses[iter_num, 0] = loss_rpn[1] losses[iter_num, 1] = loss_rpn[2] losses[iter_num, 2] = loss_class[1] losses[iter_num, 3] = loss_class[2] losses[iter_num, 4] = loss_class[3] iter_num += 1 progbar.update(iter_num, [('rpn_cls', np.mean(losses[:iter_num, 0])), ('rpn_regr', np.mean(losses[:iter_num, 1])), ('detector_cls', np.mean(losses[:iter_num, 2])), ('detector_regr', np.mean(losses[:iter_num, 3])), ('mean_overlapping_bboxes', float(sum(rpn_accuracy_for_epoch)) / len(rpn_accuracy_for_epoch))]) if iter_num == epoch_length: loss_rpn_cls = np.mean(losses[:, 0]) loss_rpn_regr = np.mean(losses[:, 1]) loss_class_cls = np.mean(losses[:, 2]) loss_class_regr = np.mean(losses[:, 3]) class_acc = np.mean(losses[:, 4]) mean_overlapping_bboxes = float(sum(rpn_accuracy_for_epoch)) / len(rpn_accuracy_for_epoch) rpn_accuracy_for_epoch = [] if C.verbose: print('Mean number of bounding boxes from RPN overlapping ground truth boxes: {}'.format(mean_overlapping_bboxes)) print('Classifier accuracy for bounding boxes from RPN: {}'.format(class_acc)) print('Loss RPN classifier: {}'.format(loss_rpn_cls)) print('Loss RPN regression: {}'.format(loss_rpn_regr)) print('Loss Detector classifier: {}'.format(loss_class_cls)) print('Loss Detector regression: {}'.format(loss_class_regr)) print('Elapsed time: {}'.format(time.time() - start_time)) curr_loss = loss_rpn_cls + loss_rpn_regr + loss_class_cls + loss_class_regr iter_num = 0 start_time = time.time() if curr_loss < best_loss: if C.verbose: print('Total loss decreased from {} to {}, saving weights'.format(best_loss, curr_loss)) best_loss = curr_loss model_rpn.save_weights(output_weight_path) model_classifier.save_weights(output_weight_path) break except Exception as e: print('Exception: {}'.format(e)) continue print('Training complete, exiting.') ``` 这是一个简单的 Faster R-CNN 训练自己数据集的示例代码,可以根据自己的数据集和需求进行修改和优化。

faster rcnn目标检测代码

以下是使用PyTorch实现Faster R-CNN目标检测的示例代码: ```python import torch import torchvision import torchvision.transforms as transforms import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader from torch.autograd import Variable from collections import OrderedDict import numpy as np import cv2 import os # 定义超参数 learning_rate = 0.001 num_epochs = 5 batch_size = 16 # 定义数据预处理 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) ]) # 加载COCO数据集 train_data = torchvision.datasets.CocoDetection(root='./data', annFile='./data/annotations/instances_train2017.json', transform=transform) train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True) # 定义模型 class FasterRCNN(nn.Module): def __init__(self): super(FasterRCNN, self).__init__() self.features = nn.Sequential(OrderedDict([ ('conv1', nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)), ('relu1', nn.ReLU(inplace=True)), ('conv2', nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)), ('relu2', nn.ReLU(inplace=True)), ('conv3', nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1)), ('relu3', nn.ReLU(inplace=True)), ('conv4', nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1)), ('relu4', nn.ReLU(inplace=True)), ('conv5', nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)), ('relu5', nn.ReLU(inplace=True)), ('maxpool', nn.MaxPool2d(kernel_size=2, stride=2)) ])) self.roi_pool = nn.AdaptiveMaxPool2d((7, 7)) self.head = nn.Sequential(OrderedDict([ ('fc6', nn.Linear(7 * 7 * 512, 4096)), ('relu6', nn.ReLU(inplace=True)), ('drop6', nn.Dropout()), ('fc7', nn.Linear(4096, 4096)), ('relu7', nn.ReLU(inplace=True)), ('drop7', nn.Dropout()) ])) self.cls_score = nn.Linear(4096, 80) self.bbox_pred = nn.Linear(4096, 320) def forward(self, x, rois): x = self.features(x) x = self.roi_pool(x) x = self.head(x.view(x.size(0), -1)) cls_score = self.cls_score(x) bbox_pred = self.bbox_pred(x) return cls_score, bbox_pred # 定义损失函数和优化器 model = FasterRCNN() criterion_cls = nn.CrossEntropyLoss() criterion_bbox = nn.SmoothL1Loss() optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9) # 训练模型 for epoch in range(num_epochs): for i, (images, targets) in enumerate(train_loader): images = Variable(images) targets = [{k: Variable(v) for k, v in t.items()} for t in targets] # 前向传播 cls_scores, bbox_preds = model(images, targets) cls_scores = torch.cat(cls_scores, dim=0) bbox_preds = torch.cat(bbox_preds, dim=0) cls_targets = torch.cat([t['labels'] for t in targets]) bbox_targets = torch.cat([t['boxes'] for t in targets]) # 计算损失 loss_cls = criterion_cls(cls_scores, cls_targets) loss_bbox = criterion_bbox(bbox_preds, bbox_targets) loss = loss_cls + loss_bbox # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() if (i + 1) % 100 == 0: print("Epoch [{}/{}], Iteration [{}/{}], Loss: {:.4f}" .format(epoch + 1, num_epochs, i + 1, len(train_loader), loss.item())) # 保存模型 torch.save(model.state_dict(), 'faster_rcnn.pth') ``` 注意:以上代码仅是一个示例,实际使用时可能需要进行适当的修改和调整。
阅读全文

相关推荐

最新推荐

recommend-type

用Faster Rcnn 训练自己的数据成功经验(matlab版)

本文将结合Matlab环境,分享在使用Faster R-CNN训练自己的数据集时的成功经验,同时着重介绍如何将数据集转换为VOC2007格式以适应Faster-RCNN训练。 首先,为确保Faster R-CNN的顺利训练,必须下载并安装Matlab版本...
recommend-type

faster—rcnn物体检测视频全集.docx

唐宇迪教授的物体检测视频教程针对的就是这一算法,通过详尽的讲解和实践代码,为初学者提供了深入理解Faster R-CNN的宝贵资源。 Faster R-CNN的主要贡献在于引入了Region Proposal Network (RPN),这是一个能够与...
recommend-type

精选毕设项目-微笑话.zip

精选毕设项目-微笑话
recommend-type

免安装JDK 1.8.0_241:即刻配置环境运行

资源摘要信息:"JDK 1.8.0_241 是Java开发工具包(Java Development Kit)的版本号,代表了Java软件开发环境的一个特定发布。它由甲骨文公司(Oracle Corporation)维护,是Java SE(Java Platform, Standard Edition)的一部分,主要用于开发和部署桌面、服务器以及嵌入式环境中的Java应用程序。本版本是JDK 1.8的更新版本,其中的241代表在该版本系列中的具体更新编号。此版本附带了Java源码,方便开发者查看和学习Java内部实现机制。由于是免安装版本,因此不需要复杂的安装过程,解压缩即可使用。用户配置好环境变量之后,即可以开始运行和开发Java程序。" 知识点详细说明: 1. JDK(Java Development Kit):JDK是进行Java编程和开发时所必需的一组工具集合。它包含了Java运行时环境(JRE)、编译器(javac)、调试器以及其他工具,如Java文档生成器(javadoc)和打包工具(jar)。JDK允许开发者创建Java应用程序、小程序以及可以部署在任何平台上的Java组件。 2. Java SE(Java Platform, Standard Edition):Java SE是Java平台的标准版本,它定义了Java编程语言的核心功能和库。Java SE是构建Java EE(企业版)和Java ME(微型版)的基础。Java SE提供了多种Java类库和API,包括集合框架、Java虚拟机(JVM)、网络编程、多线程、IO、数据库连接(JDBC)等。 3. 免安装版:通常情况下,JDK需要进行安装才能使用。但免安装版JDK仅需要解压缩到磁盘上的某个目录,不需要进行安装程序中的任何步骤。用户只需要配置好环境变量(主要是PATH、JAVA_HOME等),就可以直接使用命令行工具来运行Java程序或编译代码。 4. 源码:在软件开发领域,源码指的是程序的原始代码,它是由程序员编写的可读文本,通常是高级编程语言如Java、C++等的代码。本压缩包附带的源码允许开发者阅读和研究Java类库是如何实现的,有助于深入理解Java语言的内部工作原理。源码对于学习、调试和扩展Java平台是非常有价值的资源。 5. 环境变量配置:环境变量是操作系统中用于控制程序执行环境的参数。在JDK中,常见的环境变量包括JAVA_HOME和PATH。JAVA_HOME是JDK安装目录的路径,配置此变量可以让操作系统识别到JDK的位置。PATH变量则用于指定系统命令查找的路径,将JDK的bin目录添加到PATH后,就可以在命令行中的任何目录下执行JDK中的命令,如javac和java。 在实际开发中,了解并正确配置JDK对于Java开发者来说是一个基础且重要的环节。掌握如何安装和配置JDK,以及如何理解JDK中的源码和各种工具,对于进行Java编程和解决问题至关重要。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【提升效率与稳定性】:深入掌握单相整流器的控制策略

# 摘要 单相整流器作为电力电子技术的基础设备,广泛应用于电力系统和工业自动化领域。本文首先概述了单相整流器的基本概念,详细分析了其工作原理,包括电力电子器件的角色、数学模型以及控制策略。随后,针对控制技术进行了深入探讨,包括传统控制技术如PID控制和高级控制策略如模糊逻辑控制及自适应控制的应用。进一步地,本文提出了一系列提升单相整流器性能的方法,如效率提升策略、系统稳定性措施,以及性能评估与优化方案。最后,文章探讨了单相整流器在不同领域的应用案例,并对新兴技术与市场趋势进行了展望。 # 关键字 单相整流器;电力电子器件;数学模型;控制策略;性能提升;应用案例 参考资源链接:[单相PWM整
recommend-type

你看这是ashx映射的cs文件初始代码,你看这里边根本就没有写对action参数进行任何操作但你.ashx?action=submit这样去做他就能返回出数据这是为什么

在ASP.NET中,.ashx文件(也称为HTTP处理程序)用于处理HTTP请求并返回响应。即使在初始代码中没有对action参数进行任何操作,系统仍然可以通过默认的ProcessRequest方法处理请求并返回数据。 当你在URL中传递参数(如?action=submit)时,这些参数会被包含在请求的查询字符串中。虽然你的代码没有显式地处理这些参数,但默认的ProcessRequest方法会接收这些参数并执行一些默认操作。 以下是一个简单的.ashx文件示例: ```csharp <%@ WebHandler Language="C#" Class="MyHandler" %> us
recommend-type

机器学习预测葡萄酒评分:二值化品尝笔记的应用

资源摘要信息:"wine_reviewer:使用机器学习基于二值化的品尝笔记来预测葡萄酒评论分数" 在当今这个信息爆炸的时代,机器学习技术已经被广泛地应用于各个领域,其中包括食品和饮料行业的质量评估。在本案例中,将探讨一个名为wine_reviewer的项目,该项目的目标是利用机器学习模型,基于二值化的品尝笔记数据来预测葡萄酒评论的分数。这个项目不仅对于葡萄酒爱好者具有极大的吸引力,同时也为数据分析和机器学习的研究人员提供了实践案例。 首先,要理解的关键词是“机器学习”。机器学习是人工智能的一个分支,它让计算机系统能够通过经验自动地改进性能,而无需人类进行明确的编程。在葡萄酒评分预测的场景中,机器学习算法将从大量的葡萄酒品尝笔记数据中学习,发现笔记与葡萄酒最终评分之间的相关性,并利用这种相关性对新的品尝笔记进行评分预测。 接下来是“二值化”处理。在机器学习中,数据预处理是一个重要的步骤,它直接影响模型的性能。二值化是指将数值型数据转换为二进制形式(0和1)的过程,这通常用于简化模型的计算复杂度,或者是数据分类问题中的一种技术。在葡萄酒品尝笔记的上下文中,二值化可能涉及将每种口感、香气和外观等属性的存在与否标记为1(存在)或0(不存在)。这种方法有利于将文本数据转换为机器学习模型可以处理的格式。 葡萄酒评论分数是葡萄酒评估的量化指标,通常由品酒师根据酒的品质、口感、香气、外观等进行评分。在这个项目中,葡萄酒的品尝笔记将被用作特征,而品酒师给出的分数则是目标变量,模型的任务是找出两者之间的关系,并对新的品尝笔记进行分数预测。 在机器学习中,通常会使用多种算法来构建预测模型,如线性回归、决策树、随机森林、梯度提升机等。在wine_reviewer项目中,可能会尝试多种算法,并通过交叉验证等技术来评估模型的性能,最终选择最适合这个任务的模型。 对于这个项目来说,数据集的质量和特征工程将直接影响模型的准确性和可靠性。在准备数据时,可能需要进行数据清洗、缺失值处理、文本规范化、特征选择等步骤。数据集中的标签(目标变量)即为葡萄酒的评分,而特征则来自于品酒师的品尝笔记。 项目还提到了“kaggle”和“R”,这两个都是数据分析和机器学习领域中常见的元素。Kaggle是一个全球性的数据科学竞赛平台,提供各种机器学习挑战和数据集,吸引了来自全球的数据科学家和机器学习专家。通过参与Kaggle竞赛,可以提升个人技能,并有机会接触到最新的机器学习技术和数据处理方法。R是一种用于统计计算和图形的编程语言和软件环境,它在统计分析、数据挖掘、机器学习等领域有广泛的应用。使用R语言可以帮助研究人员进行数据处理、统计分析和模型建立。 至于“压缩包子文件的文件名称列表”,这里可能存在误解或打字错误。通常,这类名称应该表示存储项目相关文件的压缩包,例如“wine_reviewer-master.zip”。这个压缩包可能包含了项目的源代码、数据集、文档和其它相关资源。在开始项目前,研究人员需要解压这个文件包,并且仔细阅读项目文档,以便了解项目的具体要求和数据格式。 总之,wine_reviewer项目是一个结合了机器学习、数据处理和葡萄酒品鉴的有趣尝试,它不仅展示了机器学习在实际生活中的应用潜力,也为研究者提供了丰富的学习资源和实践机会。通过这种跨领域的合作,可以为葡萄酒行业带来更客观、一致的评价标准,并帮助消费者做出更加明智的选择。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【单相整流器终极指南】:电气工程师的20年实用技巧大揭秘

![【单相整流器终极指南】:电气工程师的20年实用技巧大揭秘](https://www.kemet.com/content/dam/kemet/lightning/images/ec-content/2020/08/Figure-1-film-filtering-solution-diagram.jpg) # 摘要 单相整流器是电力电子技术中应用广泛的设备,用于将交流电转换为直流电。本文首先介绍了单相整流器的基础知识和工作原理,分析了其设计要点,性能评估方法以及在电力系统和电子设备中的应用。接着,探讨了单相整流器的进阶应用和优化策略,包括提高效率和数字化改造。文章还通过具体案例分析,展示了单