faster rcnn 自己的数据集 目标检测 代码 教程

时间: 2023-09-09 09:02:06 浏览: 58
Faster R-CNN是一种常用的目标检测算法,可以用于检测图像中的目标物体。在使用Faster R-CNN进行目标检测时,我们需要自己准备一个数据集,以便训练模型识别我们关心的目标。 首先,我们需要收集一组带有标签的图像,标签可以是目标物体的边界框坐标和类别。收集到的图像应包含我们要检测的目标物体以及背景等其他物体。 接下来,我们需要为数据集标注目标物体的边界框和类别。可以使用标注工具手动标注或者借助一些自动标注工具。将标注结果保存为XML、JSON等格式。 然后,我们需要将数据集划分为训练集和测试集。训练集用于训练模型,测试集用于评估模型的性能。 接着,我们需要根据Faster R-CNN的代码教程进行模型训练。可以参考PyTorch官方提供的代码实现或者一些开源实现代码。在训练模型时,需要配置网络参数、学习率以及其他超参数,并加载准备好的数据集。 在训练过程中,模型将学习如何从图像中检测出我们关心的目标物体。通过调整模型的网络结构和参数,我们可以提高模型的检测精度。 最后,我们可以使用训练好的模型在新的图像上进行目标检测。将测试图像输入到模型中,模型将输出该图像中检测到的目标物体的位置和类别。 总结来说,使用Faster R-CNN进行目标检测,我们需要准备自己的数据集并进行标注,然后根据代码教程进行模型的训练和调优,最后使用训练好的模型进行目标检测。这个过程需要一定的编程能力和对深度学习模型的理解。
相关问题

faster rcnn训练自己数据集的代码

Faster R-CNN 是一种基于深度学习的目标检测算法,它可以用于训练自己的数据集。下面是 Faster R-CNN 训练自己数据集的代码示例: 1. 准备训练数据集 首先需要准备训练数据集,包括图像和标注文件。标注文件可以是 VOC 格式或 COCO 格式。 2. 安装依赖库和下载代码 需要安装 TensorFlow 和 Keras,以及下载 Faster R-CNN 的代码。 3. 修改配置文件 修改 Faster R-CNN 的配置文件,包括训练和测试的参数、数据集路径以及模型保存路径等。 4. 训练模型 运行训练代码,使用准备好的数据集进行训练,直到模型收敛或达到预设的训练轮数。 5. 测试模型 使用测试数据集对训练好的模型进行测试,评估模型的准确率和召回率等指标。 6. 模型优化 根据测试结果对模型进行优化,包括调整参数、增加数据集大小等。 参考代码: 以下是 Faster R-CNN 训练自己数据集的代码示例。这里以 TensorFlow 和 Keras 为例,代码中的数据集为 VOC 格式。 ```python # 导入依赖库 import tensorflow as tf from keras import backend as K from keras.layers import Input from keras.models import Model from keras.optimizers import Adam from keras.utils import plot_model from keras.callbacks import TensorBoard, ModelCheckpoint from keras_frcnn import config from keras_frcnn import data_generators from keras_frcnn import losses as losses_fn from keras_frcnn import roi_helpers from keras_frcnn import resnet as nn from keras_frcnn import visualize # 设置配置文件 config_output_filename = 'config.pickle' network = 'resnet50' num_epochs = 1000 output_weight_path = './model_frcnn.hdf5' input_weight_path = './resnet50_weights_tf_dim_ordering_tf_kernels.h5' tensorboard_dir = './logs' train_path = './train.txt' test_path = './test.txt' num_rois = 32 horizontal_flips = True vertical_flips = True rot_90 = True output_weight_path = './model_frcnn.hdf5' # 加载配置文件 config = config.Config() config_output_filename = 'config.pickle' # 加载数据集 all_imgs, classes_count, class_mapping = data_generators.get_data(train_path) test_imgs, _, _ = data_generators.get_data(test_path) # 计算平均像素值 if 'bg' not in classes_count: classes_count['bg'] = 0 class_mapping['bg'] = len(class_mapping) config.class_mapping = class_mapping # 计算平均像素值 C = config.num_channels mean_pixel = [103.939, 116.779, 123.68] img_size = (config.im_size, config.im_size) # 组装模型 input_shape_img = (None, None, C) img_input = Input(shape=input_shape_img) roi_input = Input(shape=(num_rois, 4)) shared_layers = nn.nn_base(img_input, trainable=True) # RPN 网络 num_anchors = len(config.anchor_box_scales) * len(config.anchor_box_ratios) rpn_layers = nn.rpn(shared_layers, num_anchors) # RoI 网络 classifier = nn.classifier(shared_layers, roi_input, num_rois, nb_classes=len(classes_count), trainable=True) model_rpn = Model(img_input, rpn_layers) model_classifier = Model([img_input, roi_input], classifier) # 加载权重 model_rpn.load_weights(input_weight_path, by_name=True) model_classifier.load_weights(input_weight_path, by_name=True) # 生成训练数据 data_gen_train = data_generators.get_anchor_gt(all_imgs, classes_count, C, K.image_dim_ordering(), mode='train', \ img_size=img_size, \ num_rois=num_rois, \ horizontal_flips=horizontal_flips, \ vertical_flips=vertical_flips, \ rot_90=rot_90) # 编译模型 optimizer = Adam(lr=1e-5) model_rpn.compile(optimizer=optimizer, loss=[losses_fn.rpn_loss_cls(num_anchors), losses_fn.rpn_loss_regr(num_anchors)]) model_classifier.compile(optimizer=optimizer, loss=[losses_fn.class_loss_cls, losses_fn.class_loss_regr(len(classes_count) - 1)], metrics={'dense_class_{}'.format(len(classes_count)): 'accuracy'}) # 训练模型 epoch_length = 1000 num_epochs = int(num_epochs) iter_num = 0 losses = np.zeros((epoch_length, 5)) rpn_accuracy_rpn_monitor = [] rpn_accuracy_for_epoch = [] start_time = time.time() best_loss = np.Inf class_mapping_inv = {v: k for k, v in class_mapping.items()} print('Starting training') for epoch_num in range(num_epochs): progbar = generic_utils.Progbar(epoch_length) print('Epoch {}/{}'.format(epoch_num + 1, num_epochs)) while True: try: if len(rpn_accuracy_rpn_monitor) == epoch_length and C.verbose: mean_overlapping_bboxes = float(sum(rpn_accuracy_rpn_monitor)) / len(rpn_accuracy_rpn_monitor) rpn_accuracy_rpn_monitor = [] print('Average number of overlapping bounding boxes from RPN = {} for {} previous iterations'.format(mean_overlapping_bboxes, epoch_length)) if mean_overlapping_bboxes == 0: print('RPN is not producing bounding boxes that overlap the ground truth boxes. Check RPN settings or keep training.') X, Y, img_data = next(data_gen_train) loss_rpn = model_rpn.train_on_batch(X, Y) P_rpn = model_rpn.predict_on_batch(X) R = roi_helpers.rpn_to_roi(P_rpn[0], P_rpn[1], C.image_dim_ordering(), use_regr=True, overlap_thresh=0.7, max_boxes=300) X2, Y1, Y2, IouS = roi_helpers.calc_iou(R, img_data, C, class_mapping) if X2 is None: rpn_accuracy_rpn_monitor.append(0) rpn_accuracy_for_epoch.append(0) continue # sampling positive/negative samples neg_samples = np.where(Y1[0, :, -1] == 1) pos_samples = np.where(Y1[0, :, -1] == 0) if len(neg_samples) > 0: neg_samples = neg_samples[0] else: neg_samples = [] if len(pos_samples) > 0: pos_samples = pos_samples[0] else: pos_samples = [] rpn_accuracy_rpn_monitor.append(len(pos_samples)) rpn_accuracy_for_epoch.append((len(pos_samples))) if C.num_rois > 1: if len(pos_samples) < C.num_rois // 2: selected_pos_samples = pos_samples.tolist() else: selected_pos_samples = np.random.choice(pos_samples, C.num_rois // 2, replace=False).tolist() try: selected_neg_samples = np.random.choice(neg_samples, C.num_rois - len(selected_pos_samples), replace=False).tolist() except: selected_neg_samples = np.random.choice(neg_samples, C.num_rois - len(selected_pos_samples), replace=True).tolist() sel_samples = selected_pos_samples + selected_neg_samples else: # in the extreme case where num_rois = 1, we pick a random pos or neg sample selected_pos_samples = pos_samples.tolist() selected_neg_samples = neg_samples.tolist() if np.random.randint(0, 2): sel_samples = random.choice(neg_samples) else: sel_samples = random.choice(pos_samples) loss_class = model_classifier.train_on_batch([X, X2[:, sel_samples, :]], [Y1[:, sel_samples, :], Y2[:, sel_samples, :]]) losses[iter_num, 0] = loss_rpn[1] losses[iter_num, 1] = loss_rpn[2] losses[iter_num, 2] = loss_class[1] losses[iter_num, 3] = loss_class[2] losses[iter_num, 4] = loss_class[3] iter_num += 1 progbar.update(iter_num, [('rpn_cls', np.mean(losses[:iter_num, 0])), ('rpn_regr', np.mean(losses[:iter_num, 1])), ('detector_cls', np.mean(losses[:iter_num, 2])), ('detector_regr', np.mean(losses[:iter_num, 3])), ('mean_overlapping_bboxes', float(sum(rpn_accuracy_for_epoch)) / len(rpn_accuracy_for_epoch))]) if iter_num == epoch_length: loss_rpn_cls = np.mean(losses[:, 0]) loss_rpn_regr = np.mean(losses[:, 1]) loss_class_cls = np.mean(losses[:, 2]) loss_class_regr = np.mean(losses[:, 3]) class_acc = np.mean(losses[:, 4]) mean_overlapping_bboxes = float(sum(rpn_accuracy_for_epoch)) / len(rpn_accuracy_for_epoch) rpn_accuracy_for_epoch = [] if C.verbose: print('Mean number of bounding boxes from RPN overlapping ground truth boxes: {}'.format(mean_overlapping_bboxes)) print('Classifier accuracy for bounding boxes from RPN: {}'.format(class_acc)) print('Loss RPN classifier: {}'.format(loss_rpn_cls)) print('Loss RPN regression: {}'.format(loss_rpn_regr)) print('Loss Detector classifier: {}'.format(loss_class_cls)) print('Loss Detector regression: {}'.format(loss_class_regr)) print('Elapsed time: {}'.format(time.time() - start_time)) curr_loss = loss_rpn_cls + loss_rpn_regr + loss_class_cls + loss_class_regr iter_num = 0 start_time = time.time() if curr_loss < best_loss: if C.verbose: print('Total loss decreased from {} to {}, saving weights'.format(best_loss, curr_loss)) best_loss = curr_loss model_rpn.save_weights(output_weight_path) model_classifier.save_weights(output_weight_path) break except Exception as e: print('Exception: {}'.format(e)) continue print('Training complete, exiting.') ``` 这是一个简单的 Faster R-CNN 训练自己数据集的示例代码,可以根据自己的数据集和需求进行修改和优化。

faster rcnn目标检测代码

以下是使用PyTorch实现Faster R-CNN目标检测的示例代码: ```python import torch import torchvision import torchvision.transforms as transforms import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader from torch.autograd import Variable from collections import OrderedDict import numpy as np import cv2 import os # 定义超参数 learning_rate = 0.001 num_epochs = 5 batch_size = 16 # 定义数据预处理 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) ]) # 加载COCO数据集 train_data = torchvision.datasets.CocoDetection(root='./data', annFile='./data/annotations/instances_train2017.json', transform=transform) train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True) # 定义模型 class FasterRCNN(nn.Module): def __init__(self): super(FasterRCNN, self).__init__() self.features = nn.Sequential(OrderedDict([ ('conv1', nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)), ('relu1', nn.ReLU(inplace=True)), ('conv2', nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)), ('relu2', nn.ReLU(inplace=True)), ('conv3', nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1)), ('relu3', nn.ReLU(inplace=True)), ('conv4', nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1)), ('relu4', nn.ReLU(inplace=True)), ('conv5', nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)), ('relu5', nn.ReLU(inplace=True)), ('maxpool', nn.MaxPool2d(kernel_size=2, stride=2)) ])) self.roi_pool = nn.AdaptiveMaxPool2d((7, 7)) self.head = nn.Sequential(OrderedDict([ ('fc6', nn.Linear(7 * 7 * 512, 4096)), ('relu6', nn.ReLU(inplace=True)), ('drop6', nn.Dropout()), ('fc7', nn.Linear(4096, 4096)), ('relu7', nn.ReLU(inplace=True)), ('drop7', nn.Dropout()) ])) self.cls_score = nn.Linear(4096, 80) self.bbox_pred = nn.Linear(4096, 320) def forward(self, x, rois): x = self.features(x) x = self.roi_pool(x) x = self.head(x.view(x.size(0), -1)) cls_score = self.cls_score(x) bbox_pred = self.bbox_pred(x) return cls_score, bbox_pred # 定义损失函数和优化器 model = FasterRCNN() criterion_cls = nn.CrossEntropyLoss() criterion_bbox = nn.SmoothL1Loss() optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9) # 训练模型 for epoch in range(num_epochs): for i, (images, targets) in enumerate(train_loader): images = Variable(images) targets = [{k: Variable(v) for k, v in t.items()} for t in targets] # 前向传播 cls_scores, bbox_preds = model(images, targets) cls_scores = torch.cat(cls_scores, dim=0) bbox_preds = torch.cat(bbox_preds, dim=0) cls_targets = torch.cat([t['labels'] for t in targets]) bbox_targets = torch.cat([t['boxes'] for t in targets]) # 计算损失 loss_cls = criterion_cls(cls_scores, cls_targets) loss_bbox = criterion_bbox(bbox_preds, bbox_targets) loss = loss_cls + loss_bbox # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() if (i + 1) % 100 == 0: print("Epoch [{}/{}], Iteration [{}/{}], Loss: {:.4f}" .format(epoch + 1, num_epochs, i + 1, len(train_loader), loss.item())) # 保存模型 torch.save(model.state_dict(), 'faster_rcnn.pth') ``` 注意:以上代码仅是一个示例,实际使用时可能需要进行适当的修改和调整。

相关推荐

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SPDK_NVMF_DISCOVERY_NQN是什么 有什么作用

SPDK_NVMF_DISCOVERY_NQN 是 SPDK (Storage Performance Development Kit) 中用于查询 NVMf (Non-Volatile Memory express over Fabrics) 存储设备名称的协议。NVMf 是一种基于网络的存储协议,可用于连接远程非易失性内存存储器。 SPDK_NVMF_DISCOVERY_NQN 的作用是让存储应用程序能够通过 SPDK 查询 NVMf 存储设备的名称,以便能够访问这些存储设备。通过查询 NVMf 存储设备名称,存储应用程序可以获取必要的信息,例如存储设备的IP地址、端口号、名称等,以便能
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

Windows 运行Python脚本

要在 Windows 上运行 Python 脚本,你需要先安装 Python。可以从官网下载 Python 安装包并按照提示进行安装。安装完成后,就可以在命令行中输入 `python` 命令,进入 Python 解释器环境。 接着,你可以编写 Python 脚本,保存为 `.py` 后缀的文件。在命令行中进入脚本所在的目录,输入 `python script.py` 命令来运行脚本。其中 `script.py` 是你的脚本文件名。 如果你想在 Windows 上运行一个 Python 程序,但不想打开命令行窗口,可以将脚本文件拖动到 Python 可执行文件 `python.exe` 上,
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩