transformer实现文本分类
时间: 2023-08-28 18:04:22 浏览: 121
Transformer可以用于实现文本分类任务。它是一种基于自注意力机制的神经网络模型,它能够对输入的文本进行编码和理解,从而有效地捕捉文本的语义信息。Transformer通过多层的编码器和解码器构成,其中编码器负责对输入文本进行特征提取,解码器则负责生成输出。在文本分类任务中,可以使用Transformer的编码器部分来进行特征提取,并将提取到的特征输入到全连接层进行分类。引用中提到的文章《The Illustrated Transformer》以及《The Annotated Transformer》可以帮助你更好地理解Transformer的机制和原理。另外,引用中提到的Happy Transformer这个工具包可以简化Transformer模型的实现和训练过程。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* [6. 文本分类——transformer模型](https://blog.csdn.net/qq_38293297/article/details/105027845)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
- *3* [【NLP】使用Transformer模型进行文本分类](https://blog.csdn.net/fengdu78/article/details/120878265)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文