yolov7预测跨框取消
时间: 2023-11-20 07:59:38 浏览: 155
yolov7裁剪检测框内图像
yolov7中的跨框取消(cross-box elimination)是一种用于去除重复检测的技术。在yolov7中,跨框取消是通过计算两个边界框之间的IoU(交并比)来完成的。如果两个边界框之间的IoU大于一定的阈值,则将IoU较小的边界框删除。这个阈值可以通过调整来控制跨框取消的严格程度。
要在yolov7中实现跨框取消,可以按照以下步骤进行操作:
1.在yolov7的配置文件中,找到nms_kind参数,并将其设置为diou,这将启用跨框取消。
2.在配置文件中,找到nms_threshold参数,并将其设置为跨框取消的IoU阈值。通常情况下,这个值可以设置为0.6或0.7。
3.运行yolov7模型进行预测时,跨框取消将自动应用于检测结果中。
下面是一个示例代码,展示了如何在yolov7中使用跨框取消:
```python
import cv2
import numpy as np
# 加载yolov7模型
net = cv2.dnn.readNet("yolov7.weights", "yolov7.cfg")
# 加载类别标签
classes = []
with open("coco.names", "r") as f:
classes = [line.strip() for line in f.readlines()]
# 加载测试图像
img = cv2.imread("test.jpg")
# 将图像转换为blob格式
blob = cv2.dnn.blobFromImage(img, 1/255.0, (416, 416), swapRB=True, crop=False)
# 将blob输入到yolov7模型中进行预测
net.setInput(blob)
outs = net.forward(net.getUnconnectedOutLayersNames())
# 解析预测结果
class_ids = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5:
center_x = int(detection[0] * img.shape[1])
center_y = int(detection[1] * img.shape[0])
w = int(detection[2] * img.shape[1])
h = int(detection[3] * img.shape[0])
x = center_x - w // 2
y = center_y - h // 2
class_ids.append(class_id)
confidences.append(float(confidence))
boxes.append([x, y, w, h])
# 应用跨框取消
indices = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.6)
# 绘制检测结果
for i in indices:
i = i[0]
box = boxes[i]
x = box[0]
y = box[1]
w = box[2]
h = box[3]
cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2)
cv2.putText(img, classes[class_ids[i]], (x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
# 显示检测结果
cv2.imshow("Output", img)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
阅读全文