python识别图片数字pytorch
时间: 2024-09-21 11:11:32 浏览: 64
Python手写数字识别带手写板GUI界面 Pytorch代码 含训练模型
5星 · 资源好评率100%
在Python中,利用PyTorch库进行图像数字识别通常涉及深度学习中的计算机视觉任务,比如手写数字识别(如MNIST数据集)。这里是一个简单的步骤概述:
1. **安装所需库**:首先需要安装`torch`, `torchvision`等库,可以使用pip进行安装:
```
pip install torch torchvision
```
2. **数据预处理**:下载并加载MNIST数据集,通过`torchvision.datasets.MNIST`获取训练集和测试集:
```python
from torchvision import datasets, transforms
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=transform)
```
3. **创建模型**:使用PyTorch构建卷积神经网络(CNN),例如LeNet、ResNet等,作为分类器:
```python
import torch.nn as nn
model = nn.Sequential(
nn.Conv2d(1, 16, kernel_size=5), nn.ReLU(),
nn.MaxPool2d(kernel_size=2), nn.Dropout2d(0.2),
nn.Conv2d(16, 32, kernel_size=5), nn.ReLU(),
nn.MaxPool2d(kernel_size=2), nn.Dropout2d(0.2),
nn.Flatten(), nn.Linear(32 * 7 * 7, 128), nn.ReLU(),
nn.Linear(128, 10) # 输出层,10表示0到9共10个类别
)
```
4. **训练模型**:定义损失函数(交叉熵)和优化器(SGD、Adam等),然后进行迭代训练:
```python
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.001)
for epoch in range(num_epochs):
# 训练过程...
# 验证过程...
```
5. **预测**:对新的图片数据应用模型进行预测:
```python
img, label = test_dataset[0]
img = img.unsqueeze(0) # 添加batch维度
with torch.no_grad():
output = model(img)
_, predicted = torch.max(output.data, 1)
print(f"Predicted digit: {predicted.item()}")
```
阅读全文