# train_test_split函数,用于划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
时间: 2024-04-04 15:27:37 浏览: 63
Python分割训练集和测试集的方法示例
train_test_split()函数是用于随机划分训练集和测试集的函数。它可以将给定的数据集按照指定的比例划分为训练集和测试集,并返回划分后的数据。
下面是一个示例,演示了如何使用train_test_split()函数来划分训练集和测试集:
```python
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
其中,参数说明如下:
- X:样本特征集
- y:样本的标签集
- test_size:测试集占数据集的比重,可以是一个浮点数(表示比例)或一个整数(表示样本数量)
- random_state:随机数的种子,用于控制随机划分的结果,相同的种子会产生相同的划分结果
这样,X_train和y_train就构成了训练集,X_test和y_test就构成了测试集。
阅读全文