贪心算法 跳跃游戏

时间: 2023-11-19 11:49:06 浏览: 64
贪心算法是一种解决最优化问题的常用方法。在跳跃游戏中,贪心算法的思路是从前往后遍历数组,不断更新当前能够跳到的最远距离。根据题目要求,我们需要计算出最少的跳跃次数来到达数组的最后一个位置。 根据引用中的代码,我们可以看到其中使用了一个变量end,表示当前能够跳到的最远位置。在遍历数组过程中,我们不断更新maxPos,即当前位置能够跳到的最远位置。当遍历到end时,当前位置已经不能再往前跳了,因此我们需要在更新end之后,将步数steps加1。最后,返回steps即为最少的跳跃次数。 而根据引用中的代码,是从后往前找路径,反向查找,直到找到出发位置。通过遍历数组,找到能跳到当前位置的最远位置,然后将该位置作为新的index,继续寻找跳到这个新位置的路径,直到找到数组的开始位置。最后返回mintimes即为最少的跳跃次数。 因此,使用贪心算法,我们可以得到最少的跳跃次数来完成跳跃游戏。
相关问题

跳跃游戏c++贪心算法

跳跃游戏是一个贪心算法问题。在这个问题中,我们需要判断是否能够从数组的第0个位置跳跃到数组的最后一个位置。 我们可以使用贪心算法来解决这个问题。我们从第0个位置开始,一直跳到最后一个位置,每次选择能够跳跃最远的位置作为下一个跳跃点。我们使用一个变量max_index来记录当前能够跳到的最远位置。 具体步骤如下: 1. 创建一个空数组index,用于存储每个位置能够跳到的最远位置。 2. 遍历给定的数组nums,计算每个位置能够跳到的最远位置,并将其存入index数组。 3. 初始化变量jump为0,表示当前所在的位置。 4. 初始化变量max_index为index,表示当前能够跳到的最远位置。 5. 使用while循环,当jump小于index数组的大小且jump小于等于max_index时,执行循环体。 6. 在循环体中,如果max_index小于index[jump],则更新max_index为index[jump],表示当前能够跳得更远。 7. 每次循环结束后,将jump自增1。 8. 在循环结束后,判断jump是否等于index数组的大小,如果等于,则表示能够跳到最后一个位置,返回true,否则返回false。 代码如下所示: ```cpp bool CanJump(std::vector<int>& nums) { std::vector<int> index; for (unsigned int i = 0; i < nums.size(); i++) { index.push_back(i + nums[i]); } unsigned int jump = 0; int max_index = index[0]; while (jump < index.size() && jump <= max_index) { if (max_index < index[jump]) { max_index = index[jump]; } jump++; } if (jump == index.size()) { return true; } return false; } ```

Dijkstra算法和贪心算法

Dijkstra算法是一种用于解决单源最短路径问题的经典算法。它通过逐步确定从起点到其他顶点的最短路径来工作。该算法的基本思想是,从起点开始,逐步扩展到其他顶点,每次选择当前路径中距离最短的顶点,并更新与该顶点相邻的顶点的距离。通过不断重复这个过程,直到所有顶点都被访问,就可以得到从起点到其他顶点的最短路径。 贪心算法是一种在每个阶段选择当前最优解的策略,希望通过局部最优解的选择来达到全局最优解。贪心算法通常适用于问题具有贪心选择性质和最优子结构性质的情况。在每个阶段,贪心算法选择当前看起来最好的选项,并且不会回溯或者重新考虑之前的选择。然而,贪心算法并不保证能够得到全局最优解,因为它没有考虑到可能存在的其他更好的选择。

相关推荐

text/x-c
运 用 贪 心 算 法 ,vc++ 语 言 编 写 , 可 单 步 输 出 结 果 【问题描述】 跳马问题也称骑士遍历、马踏棋盘问题:在8*8方格的棋盘上,从任意指定的方格出发,为象棋中的马寻找一条走遍棋盘每一格并且只经过一次的一条路径。 考虑国际象棋棋盘上某个位置的一只马,它是否可能只走63步,正好走过除起点外的其他63个位置各一次?如果有一种这样的走法,则称所走的这条路线为一条马的周游路线。试设计一个算法找出这样一条马的周游路线。 在一个8×8的方格棋盘中,按照国际象棋中马的行走规则从棋盘上的某一方格出发,开始在棋盘上周游,如果能不重复地走遍棋盘上的每一个方格, 这样的一条周游路线在数学上被称为国际象棋盘上马的哈密尔顿链。请你设计一个程序,从键盘输入一个起始方格的坐标,由计算机自动寻找并打印 【算法描述】 本题有较多方法求解,在此仅对回溯法进行分析。 一只马在棋盘的某一点,它可以朝8个方向前进,方向向量分别是:(2,1)、(2,-1)、(1,2)、(1,-2)、(-2,1)、(-2,-1)、(-1,2)、(-1,-2)。从中任选择一个方向前进,到达新的位置。在从新的位置选择一个方向前进,继续,直到无法前进为止。无法前进可能有如下原因:下一位置超出边界、下一位置已经被访问过。当马已经无法前进时,就回退到上一位置,从新选择一个新的方向前进;如果还是无法前进,就再回退到上一位置……

最新推荐

recommend-type

lab-4-贪心算法实现最佳任务调度实验1

实验四:贪心算法实现最佳任务调度 贪心算法是一种在每一步选择中都采取在当前状态下最好或最优(即最有利)的选择,从而希望导致结果是全局最好或最优的算法。在这个实验中,我们将探讨如何使用贪心策略解决活动...
recommend-type

浅谈Python实现贪心算法与活动安排问题

贪心算法是一种优化策略,它在解决问题时,每次选择当前看起来最优的解决方案,而不考虑长远的整体最优解。这种算法适用于那些可以通过局部最优决策逐步达到全局最优解的问题。在Python中,我们可以利用贪心策略来...
recommend-type

采用C++实现区间图着色问题(贪心算法)实例详解

《C++实现区间图着色问题:贪心算法详解》 区间图着色问题是一个经典的算法问题,其核心目标是在有限的资源下,如何高效地分配一系列相互冲突的任务或事件,使其都能得到处理。在这个问题中,我们通常考虑的是如何...
recommend-type

贪心算法贪心算法贪心算法

贪心算法是一种优化策略,它在解决问题时,每次选择当前看起来最优的解决方案,希望通过一系列局部最优的选择,最终能得到全局最优解。这种算法通常用于处理能通过分解为多个子问题来解决的问题,每个子问题的解决都...
recommend-type

哈夫曼编码(贪心算法)报告.doc

算法设计与分析实验报告,附已通过源码,供学习参考,共勉♪ 目录摘要如下: 1.问题描述 2.实验目的 3.实验原理 4.实验设计 (包括输入格式、算法、输出格式) 5.实验结果与分析 (除了截图外,实验结果还用...
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。