tdnn python 模型函数
时间: 2023-05-14 21:01:40 浏览: 204
TDNN(Time Delay Neural Network)是一种时间延迟神经网络模型,用于处理时间序列数据。在Python中,TDNN模型的实现需要使用一些函数。
首先,需要导入需要的库,如numpy、keras.layers。然后,定义模型:
```
def tdnn(input_shape, kernel_initializer='glorot_uniform', bias_initializer='zeros'):
model = Sequential()
model.add(Conv1D(filters=50,
kernel_size=6,
strides=1,
activation='relu',
kernel_initializer=kernel_initializer,
bias_initializer=bias_initializer,
input_shape=input_shape))
model.add(MaxPooling1D(pool_size=2, strides=2))
model.add(Conv1D(filters=100,
kernel_size=4,
strides=1,
activation='relu',
kernel_initializer=kernel_initializer,
bias_initializer=bias_initializer))
model.add(MaxPooling1D(pool_size=2, strides=2))
model.add(Flatten())
model.add(Dense(units=500, activation='relu',
kernel_initializer=kernel_initializer,
bias_initializer=bias_initializer))
model.add(Dropout(rate=0.5))
model.add(Dense(units=1, activation='sigmoid',
kernel_initializer=kernel_initializer,
bias_initializer=bias_initializer))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
```
该模型包含Conv1D层、MaxPooling1D层、Flatten层、Dense层和Dropout层,最后使用二元交叉熵作为损失函数,优化器为Adam,评价指标为准确率(accuracy)。
最后,训练模型时需要传入输入数据和目标数据,并指定训练轮数和批大小等参数:
```
history = model.fit(train_x, train_y, epochs=10, batch_size=64, validation_data=(test_x, test_y))
```
以上是TDNN模型在Python中的简介。
阅读全文