解释nn.BatchNorm2d(mid_channels), nn.ReLU(inplace=True),
时间: 2024-05-21 17:15:19 浏览: 287
nn.BatchNorm2d(mid_channels)是用于二维卷积的批量标准化层。它可以对输入的每个通道的数据进行标准化处理,使它们的均值为0,方差为1,从而加速神经网络的收敛速度并提高模型的准确率。mid_channels是指输入的特征图的通道数。
而nn.ReLU(inplace=True)是整流线性单元(Rectified Linear Unit)。它是一个非线性激活函数,可以将输入的负值设为0,使得神经网络能够更好地处理非线性问题。inplace=True表示执行该操作时可以覆盖输入的内存,从而减少内存占用。
相关问题
1.利用Pytorch深度学习框架,根据yolov3的主干网络darknet53模型(参考下图),进行猫狗数据集的模型训练和模型推理,按下面要求完成相应代码。(76分) ①读入猫狗数据集(cat2dog),并进行必要的预处理 ②划分数据为训练集和测试集(比例自拟) ③在训练集中随机选取9张图片进行3行3列图像显示 ④构建卷积单元类封装ConvUnit,由卷积、BN、Relu激活组成 ⑤参见附图,构建yolov3的主干网络类封装DarkNet53 ⑥进行前向传播 ⑦打印输出整体模型维度结构 ⑧正确合理使用损失函数和优化器 ⑨训练集数据进行模型训练,自拟合适的超参数 ⑩模型训练完毕后,打印输出训练集准确率 ⑪打印输出测试集准确率
由于本题需要完整的代码实现,且涉及到多个部分的内容,无法在此进行完整的展示和讲解。以下是一份可能的实现代码,仅供参考:
```
import torch
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
from torchvision.datasets import ImageFolder
from torchvision.models import Darknet
# 定义数据预处理
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.CenterCrop((224, 224)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# 定义数据集
class CatDogDataset(Dataset):
def __init__(self, root_dir, transform=None):
self.dataset = ImageFolder(root_dir, transform=transform)
def __len__(self):
return len(self.dataset)
def __getitem__(self, index):
return self.dataset[index]
# 读入数据集
train_dataset = CatDogDataset('cat2dog/train', transform=transform)
test_dataset = CatDogDataset('cat2dog/test', transform=transform)
# 划分训练集和测试集
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=True)
# 显示部分训练集图片
import matplotlib.pyplot as plt
import numpy as np
images, _ = iter(train_loader).next()
fig, axs = plt.subplots(3, 3, figsize=(10, 10))
for i in range(3):
for j in range(3):
axs[i][j].imshow(np.transpose(images[i*3+j], (1, 2, 0)))
axs[i][j].axis('off')
plt.show()
# 构建卷积单元类
class ConvUnit(torch.nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0):
super(ConvUnit, self).__init__()
self.conv = torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding)
self.bn = torch.nn.BatchNorm2d(out_channels)
self.relu = torch.nn.ReLU(inplace=True)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
return x
# 构建DarkNet53主干网络
class DarkNet53(torch.nn.Module):
def __init__(self):
super(DarkNet53, self).__init__()
self.conv1 = ConvUnit(3, 32, 3, padding=1)
self.conv2 = ConvUnit(32, 64, 3, stride=2, padding=1)
self.residual1 = self._make_residual(64, 32, 64)
self.conv3 = ConvUnit(64, 128, 3, stride=2, padding=1)
self.residual2 = self._make_residual(128, 64, 128)
self.conv4 = ConvUnit(128, 256, 3, stride=2, padding=1)
self.residual3 = self._make_residual(256, 128, 256)
self.conv5 = ConvUnit(256, 512, 3, stride=2, padding=1)
self.residual4 = self._make_residual(512, 256, 512)
self.conv6 = ConvUnit(512, 1024, 3, stride=2, padding=1)
self.residual5 = self._make_residual(1024, 512, 1024)
def _make_residual(self, in_channels, mid_channels, out_channels):
return torch.nn.Sequential(
ConvUnit(in_channels, mid_channels, 1),
ConvUnit(mid_channels, out_channels, 3, padding=1),
torch.nn.Identity() if in_channels == out_channels else ConvUnit(in_channels, out_channels, 1)
)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = self.residual1(x)
x = self.conv3(x)
x = self.residual2(x)
x = self.conv4(x)
x = self.residual3(x)
x = self.conv5(x)
x = self.residual4(x)
x = self.conv6(x)
x = self.residual5(x)
return x
# 创建DarkNet53模型实例
model = Darknet(num_classes=2, init_weights=True)
# 进行前向传播
inputs, _ = iter(train_loader).next()
outputs = model(inputs)
# 打印模型维度结构
print(outputs.shape)
# 定义损失函数和优化器
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# 训练模型
num_epochs = 10
for epoch in range(num_epochs):
train_loss = 0.0
train_total = 0
train_correct = 0
for i, (inputs, labels) in enumerate(train_loader):
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
train_loss += loss.item() * inputs.size(0)
train_total += inputs.size(0)
_, predicted = torch.max(outputs.data, 1)
train_correct += (predicted == labels).sum().item()
train_accuracy = train_correct / train_total
print(f'Epoch {epoch+1}/{num_epochs}, Train Loss: {train_loss/train_total:.4f}, Train Accuracy: {train_accuracy:.4f}')
# 计算训练集准确率
train_total = 0
train_correct = 0
for inputs, labels in train_loader:
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
train_total += labels.size(0)
train_correct += (predicted == labels).sum().item()
train_accuracy = train_correct / train_total
print(f'Train Accuracy: {train_accuracy:.4f}')
# 计算测试集准确率
test_total = 0
test_correct = 0
for inputs, labels in test_loader:
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
test_total += labels.size(0)
test_correct += (predicted == labels).sum().item()
test_accuracy = test_correct / test_total
print(f'Test Accuracy: {test_accuracy:.4f}')
```
请注意,本题中的代码实现仅供参考,实际实现中可能存在错误或需要做出适当修改。如有疑问,建议参考PyTorch官方文档或相关教程进行学习。
详细说明shufflenet v2做图像识别和目标检测时的差别在哪里,并给出有代码解释的代码
ShuffleNet V2是一种轻量级的卷积神经网络,其主要目的是在保持高精度的同时减少模型的计算和内存消耗。相比于传统的卷积神经网络,ShuffleNet V2在计算效率和精度之间取得了良好的平衡。
在图像识别任务中,ShuffleNet V2相比于传统的卷积神经网络,主要的区别在于其采用了两种新的结构:逐通道组卷积和通道重排。逐通道组卷积将卷积操作分解成两个步骤,首先对每个通道进行卷积,然后将不同通道的结果合并在一起。这样可以减少模型中参数的数量,并且可以在一定程度上提高计算效率。通道重排则是通过对输入特征图进行通道的重新排列,使得不同卷积层之间可以共享计算,从而进一步减少计算量。
在目标检测任务中,ShuffleNet V2相比于传统的卷积神经网络,主要的区别在于其采用了轻量级的检测头部结构。具体来说,ShuffleNet V2在检测头部中使用了轻量级的特征金字塔网络和轻量级的预测网络,这样可以在保持较高的检测精度的同时,进一步减少计算量和内存消耗。
以下是使用 PyTorch 实现的 ShuffleNet V2 的代码示例:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class ShuffleNetV2Block(nn.Module):
def __init__(self, inp, oup, mid_channels, ksize, stride):
super(ShuffleNetV2Block, self).__init__()
self.stride = stride
self.conv1 = nn.Conv2d(inp, mid_channels, 1, 1, 0, bias=False)
self.bn1 = nn.BatchNorm2d(mid_channels)
self.depthwise_conv2 = nn.Conv2d(mid_channels, mid_channels, ksize, stride, ksize//2, groups=mid_channels, bias=False)
self.bn2 = nn.BatchNorm2d(mid_channels)
self.conv3 = nn.Conv2d(mid_channels, oup, 1, 1, 0, bias=False)
self.bn3 = nn.BatchNorm2d(oup)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.depthwise_conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.stride == 2:
residual = F.avg_pool2d(residual, 2)
if residual.shape[1] != out.shape[1]:
residual = torch.cat([residual, residual*0], dim=1)
out += residual
out = self.relu(out)
return out
class ShuffleNetV2(nn.Module):
def __init__(self, input_size=224, num_classes=1000, scale_factor=1.0):
super(ShuffleNetV2, self).__init__()
assert input_size % 32 == 0
self.stage_repeats = [4, 8, 4]
self.scale_factor = scale_factor
# stage 1
output_channel = self._make_divisible(24 * scale_factor, 4)
self.conv1 = nn.Conv2d(3, output_channel, kernel_size=3, stride=2, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(output_channel)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
# stage 2 - 4
self.stage2 = self._make_stage(2, output_channel, self._make_divisible(48 * scale_factor, 4), 3, 2)
self.stage3 = self._make_stage(self.stage_repeats[0], self._make_divisible(48 * scale_factor, 4), self._make_divisible(96 * scale_factor, 4), 3, 2)
self.stage4 = self._make_stage(self.stage_repeats[1], self._make_divisible(96 * scale_factor, 4), self._make_divisible(192 * scale_factor, 4), 3, 2)
# stage 5
self.stage5 = nn.Sequential(
nn.Conv2d(self._make_divisible(192 * scale_factor, 4), self._make_divisible(1024 * scale_factor, 4), kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(self._make_divisible(1024 * scale_factor, 4)),
nn.ReLU(inplace=True),
nn.AdaptiveAvgPool2d((1, 1)),
)
# classifier
self.fc = nn.Linear(self._make_divisible(1024 * scale_factor, 4), num_classes)
self._initialize_weights()
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.stage2(x)
x = self.stage3(x)
x = self.stage4(x)
x = self.stage5(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
def _make_divisible(self, v, divisor, min_value=None):
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
def _make_stage(self, repeat_num, inp, oup, ksize, stride):
layers = []
layers.append(ShuffleNetV2Block(inp, oup, oup//2, ksize, stride))
for i in range(repeat_num):
layers.append(ShuffleNetV2Block(oup, oup, oup//2, ksize, 1))
return nn.Sequential(*layers)
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.BatchNorm2d):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.zeros_(m.bias)
```
以上代码实现了一个基于 ShuffleNet V2 的图像分类模型。其中 `_make_stage` 方法用于构造网络中的每个 stage,而 `ShuffleNetV2Block` 则是构造每个 stage 中的基本单元。在实现目标检测任务时,可以将这个模型作为特征提取器,在此基础上添加轻量级的检测头部结构即可。
阅读全文