如何实现页面音乐播import pandas as pd from numpy import nan as NA columns = ['chinese','nath','english'] data = pd.DataFrame([[81.5,76.5,73.5],[71.,68,NA],[71.,68,NA],[NA,NA,NA],[NA,96.5,93.5]],columns=columns) data data_new = data.drop_duplicates().dropna(thresh=2) data_new data_new['chinese'].fillna(mean_chinese, inplace=True) data_new['english'].fillna(mean_english, inplace=True) data_new['mean'] = data_new.mean(axis=1) data_new bins = [0,60,75,85,100] labels = ['failed','median','great','excellent'] data_new['mean'] = pd.cut(data_new['mean'],bins=bins,labels=labels) print(data_new['mean'])放
时间: 2024-01-14 15:04:39 浏览: 38
很抱歉,我不太明白你的问题。但是,这段代码是在Python中使用pandas库对数据进行清洗和分析。首先,创建一个数据框,然后使用drop_duplicates()函数和dropna()函数删除重复值和缺失值。接下来,使用fillna()函数将缺失值填充为平均值,并计算每个学生的平均分。最后,使用pd.cut()函数将平均分分组为不同的等级,并打印输出结果。请问你还有其他问题吗?
相关问题
import pandas as pd from numpy import nan as NA columns = ['chinese', 'math', 'english'] data = pd.DataFrame([[81.5, 76.5, 73.5],[71, 68, NA],[71., 68, NA], [NA,NA,NA],[NA,96.5,93.5]],columns=columns) data应用'0',
如果你要将 data 中的 NaN 值替换为 0,可以使用 pandas 中的 fillna() 方法,代码如下:
```
data.fillna(0, inplace=True)
```
代码中的 fillna(0) 表示将 NaN 值替换为 0,inplace=True 表示直接修改原 data 数据框,如果不加这个参数,会返回一个新的数据框。
import pandas as pd from numpy import nan as NA columns = ['chinese','nath','english'] data = pd.DataFrame([[81.5,76.5,73.5],[71.,68,NA],[71.,68,NA],[NA,NA,NA],[NA,96.5,93.5]],columns=columns) data data_new = data.drop_duplicates().dropna(thresh=2) data_new data_new['chinese'].fillna(mean_chinese, inplace=True) data_new['english'].fillna(mean_english, inplace=True) data_new['mean'] = data_new.mean(axis=1) data_new bins = [0,60,75,85,100] labels = ['failed','median','great','excellent'] data_new['mean'] = pd.cut(data_new['mean'],bins=bins,labels=labels) print(data_new['mean'])这段代码有错吗 需要怎么改
这段代码没有语法错误,但是其中的变量 mean_chinese 和 mean_english 没有定义,会导致 fillna() 方法执行错误。另外,最后一行的 print() 方法输出只有等级标签,没有对应的学生信息,需要进一步修改。以下是修改后的代码:
```python
import pandas as pd
from numpy import nan as NA
columns = ['chinese', 'math', 'english'] # 将 nath 改为 math
data = pd.DataFrame([[81.5, 76.5, 73.5], [71., 68, NA], [71., 68, NA], [NA, NA, NA], [NA, 96.5, 93.5]], columns=columns)
data_new = data.drop_duplicates().dropna(thresh=2)
mean_chinese = data_new['chinese'].mean() # 计算中文成绩平均值
mean_english = data_new['english'].mean() # 计算英语成绩平均值
data_new['chinese'].fillna(mean_chinese, inplace=True)
data_new['english'].fillna(mean_english, inplace=True)
data_new['mean'] = data_new.mean(axis=1)
bins = [0, 60, 75, 85, 100]
labels = ['failed', 'median', 'great', 'excellent']
data_new['mean_label'] = pd.cut(data_new['mean'], bins=bins, labels=labels)
print(data_new) # 输出所有学生的成绩和等级标签
```
修改后的代码中,先将 nath 改为 math,然后计算出中文和英语成绩的平均值,将缺失值填充为平均值。接着计算每个学生的平均成绩,使用 pd.cut() 方法转化为等级标签,并将结果存储在 mean_label 列中。最后使用 print() 方法输出所有学生的成绩和等级标签。
阅读全文