clf = clf.fit(X_train_pca, y_train)仍出现上述错误,要如何修改,展示修改后的代码
时间: 2024-03-22 07:39:54 浏览: 188
如果修改标准输出流的编码格式没有生效,可能是因为在进行输出之前已经发生了编码错误。这时可以将数据转换为字符串形式,再输出。例如:
```python
# 先将最优参数组合转换为字符串形式
best_params_str = str(clf.best_params_)
# 使用 UTF-8 编码格式输出字符串
print(best_params_str.encode('utf-8'))
```
这样就可以避免在输出时出现编码错误了。
相关问题
pca=PCA(n_components=1) pca.fit(X1_scaled) X1_pca=pca.transform(X1_scaled) pca.fit(X2_scaled) X2_pca=pca.transform(X1_scaled) pca.fit(X3_scaled) X3_pca=pca.transform(X3_scaled) pca.fit(X4_scaled) X4_pca=pca.transform(X4_scaled) pca.fit(X5_scaled) X5_pca=pca.transform(X5_scaled) pca.fit(X6_scaled) X6_pca=pca.transform(X6_scaled) pca.fit(X7_scaled) X7_pca=pca.transform(X7_scaled) pca.fit(X8_scaled) X8_pca=pca.transform(X8_scaled) pca.fit(X9_scaled) X9_pca=pca.transform(X9_scaled) pca.fit(X10_scaled) X10_pca=pca.transform(X10_scaled) pca.fit(X11_scaled) X11_pca=pca.transform(X11_scaled) pca.fit(X12_scaled) X12_pca=pca.transform(X12_scaled) pca.fit(X13_scaled) X13_pca=pca.transform(X13_scaled) pca.fit(X14_scaled) X14_pca=pca.transform(X14_scaled) pca.fit(X15_scaled) X15_pca=pca.transform(X15_scaled) #生成变量 X1_new = X1_pca X2_new = X2_pca X3_new = X3_pca X4_new = X4_pca X5_new = X5_pca X6_new = X6_pca X7_new = X7_pca X8_new = X8_pca X9_new = X9_pca X10_new = X10_pca X11_new = X11_pca X12_new = X12_pca X13_new = X13_pca X14_new = X14_pca X15_new = X15_pca,如何让这15个变量做支持向量机预测
您可以使用scikit-learn库中的SVM模型来对这15个变量进行预测,以下是示例代码:
``` python
from sklearn import svm
from sklearn.model_selection import train_test_split
# 将15个变量组合成一个特征矩阵X
X = np.hstack((X1_new, X2_new, X3_new, X4_new, X5_new, X6_new, X7_new, X8_new, X9_new, X10_new, X11_new, X12_new, X13_new, X14_new, X15_new))
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
# 训练SVM模型
clf = svm.SVC()
clf.fit(X_train, y_train)
# 预测测试集结果
y_pred = clf.predict(X_test)
```
在上面的示例代码中,我们首先将15个变量组合成一个特征矩阵X。然后,我们使用`train_test_split`函数将数据集划分为训练集和测试集。接着,我们使用`SVC`函数创建了一个SVM模型,并使用`fit`方法对模型进行训练。最后,我们使用`predict`方法对测试集进行预测,并将结果保存在`y_pred`变量中。
把这段代码的PCA换成LDA:LR_grid = LogisticRegression(max_iter=1000, random_state=42) LR_grid_search = GridSearchCV(LR_grid, param_grid=param_grid, cv=cvx ,scoring=scoring,n_jobs=10,verbose=0) LR_grid_search.fit(pca_X_train, train_y) estimators = [ ('lr', LR_grid_search.best_estimator_), ('svc', svc_grid_search.best_estimator_), ] clf = StackingClassifier(estimators=estimators, final_estimator=LinearSVC(C=5, random_state=42),n_jobs=10,verbose=1) clf.fit(pca_X_train, train_y) estimators = [ ('lr', LR_grid_search.best_estimator_), ('svc', svc_grid_search.best_estimator_), ] param_grid = {'final_estimator':[LogisticRegression(C=0.00001),LogisticRegression(C=0.0001), LogisticRegression(C=0.001),LogisticRegression(C=0.01), LogisticRegression(C=0.1),LogisticRegression(C=1), LogisticRegression(C=10),LogisticRegression(C=100), LogisticRegression(C=1000)]} Stacking_grid =StackingClassifier(estimators=estimators,) Stacking_grid_search = GridSearchCV(Stacking_grid, param_grid=param_grid, cv=cvx, scoring=scoring,n_jobs=10,verbose=0) Stacking_grid_search.fit(pca_X_train, train_y) Stacking_grid_search.best_estimator_ train_pre_y = cross_val_predict(Stacking_grid_search.best_estimator_, pca_X_train,train_y, cv=cvx) train_res1=get_measures_gridloo(train_y,train_pre_y) test_pre_y = Stacking_grid_search.predict(pca_X_test) test_res1=get_measures_gridloo(test_y,test_pre_y) best_pca_train_aucs.append(train_res1.loc[:,"AUC"]) best_pca_test_aucs.append(test_res1.loc[:,"AUC"]) best_pca_train_scores.append(train_res1) best_pca_test_scores.append(test_res1) train_aucs.append(np.max(best_pca_train_aucs)) test_aucs.append(best_pca_test_aucs[np.argmax(best_pca_train_aucs)].item()) train_scores.append(best_pca_train_scores[np.argmax(best_pca_train_aucs)]) test_scores.append(best_pca_test_scores[np.argmax(best_pca_train_aucs)]) pca_comp.append(n_components[np.argmax(best_pca_train_aucs)]) print("n_components:") print(n_components[np.argmax(best_pca_train_aucs)])
如果要将代码中的PCA替换为LDA,可以按照以下步骤进行修改:
```python
LR_grid = LogisticRegression(max_iter=1000, random_state=42)
LR_grid_search = GridSearchCV(LR_grid, param_grid=param_grid, cv=cvx ,scoring=scoring,n_jobs=10,verbose=0)
LR_grid_search.fit(lda_X_train, train_y)
estimators = [
('lr', LR_grid_search.best_estimator_),
('svc', svc_grid_search.best_estimator_),
]
clf = StackingClassifier(estimators=estimators, final_estimator=LinearSVC(C=5, random_state=42),n_jobs=10,verbose=1)
clf.fit(lda_X_train, train_y)
estimators = [
('lr', LR_grid_search.best_estimator_),
('svc', svc_grid_search.best_estimator_),
]
param_grid = {'final_estimator': [LogisticRegression(C=0.00001),LogisticRegression(C=0.0001),
LogisticRegression(C=0.001),LogisticRegression(C=0.01),
LogisticRegression(C=0.1),LogisticRegression(C=1),
LogisticRegression(C=10),LogisticRegression(C=100),
LogisticRegression(C=1000)]}
Stacking_grid = StackingClassifier(estimators=estimators,)
Stacking_grid_search = GridSearchCV(Stacking_grid, param_grid=param_grid, cv=cvx,
scoring=scoring, n_jobs=10, verbose=0)
Stacking_grid_search.fit(lda_X_train, train_y)
Stacking_grid_search.best_estimator_
train_pre_y = cross_val_predict(Stacking_grid_search.best_estimator_, lda_X_train, train_y, cv=cvx)
train_res1 = get_measures_gridloo(train_y, train_pre_y)
test_pre_y = Stacking_grid_search.predict(lda_X_test)
test_res1 = get_measures_gridloo(test_y, test_pre_y)
best_lda_train_aucs.append(train_res1.loc[:,"AUC"])
best_lda_test_aucs.append(test_res1.loc[:,"AUC"])
best_lda_train_scores.append(train_res1)
best_lda_test_scores.append(test_res1)
train_aucs.append(np.max(best_lda_train_aucs))
test_aucs.append(best_lda_test_aucs[np.argmax(best_lda_train_aucs)].item())
train_scores.append(best_lda_train_scores[np.argmax(best_lda_train_aucs)])
test_scores.append(best_lda_test_scores[np.argmax(best_lda_train_aucs)])
lda_comp.append(n_components[np.argmax(best_lda_train_aucs)])
print("n_components:")
print(n_components[np.argmax(best_lda_train_aucs)])
```
在这个修改后的代码中,将`pca_X_train`和`pca_X_test`替换为`lda_X_train`和`lda_X_test`,并相应地修改变量和参数的名称。这样就可以使用LDA进行特征降维和模型训练了。
阅读全文