x_adv = (x_adv - 0.5) / 0.5
时间: 2023-05-22 20:04:05 浏览: 142
这是一个数值计算的问题,可以采用下面的公式来解决:
x_adv = (x_adv - 0.5) / 0.5
其中,x_adv表示原始数据,这个公式是将x_adv减去0.5,再除以0.5得到的新的数据。它在某些机器学习模型的对抗攻击中被使用。
相关问题
delta = pgd_attack(model, images, torch.tensor([0]), epsilon=0.031, alpha=0.008, num_iter=40) X_adv = (images + delta).clamp(0, 1) # Save adversarial image adv_img = X_adv.squeeze(0).detach().numpy().transpose((1, 2, 0)) adv_img = (adv_img * 0.5 + 0.5) * 255 adv_img = adv_img.astype('uint8')什么意思
这段代码实现了一个基于 Projected Gradient Descent (PGD) 的对抗样本生成攻击,并将生成的对抗样本保存在变量 `adv_img` 中。
具体来说,`pgd_attack` 函数对模型 `model` 进行了 `num_iter` 轮迭代,每次迭代都计算了损失函数关于输入图像的梯度,并以学习率 `alpha` 的大小更新输入图像的像素值,同时限制像素值的范围在 `[0, 1]` 的区间内。这样就可以生成一个最大化损失函数的对抗样本 `delta`。
接下来,将对抗样本添加到原始图像上,并将像素值截断到 `[0, 1]` 区间内,得到生成的对抗样本 `X_adv`。然后根据 `adv_img` 的维度和数据类型,将其转换为 NumPy 数组,并进行适当的缩放和类型转换,最后将其保存在 `adv_img` 变量中。
需要注意的是,这里对像素值进行了归一化和反归一化的操作。在添加对抗扰动时,使用了一个比较小的扰动幅度 `epsilon`,以限制对抗样本与原始样本之间的差异。在反归一化时,使用了一个缩放因子 `0.5` 和一个偏移量 `0.5`,将像素值从 `[-1, 1]` 的区间映射到 `[0, 255]` 的区间,以便于将其保存为图像文件。
gan_loss = criterion_adv(discriminator(gen_parts), real);real = torch.FloatTensor(batch_size, *patch).fill_(1.0).requires_grad_(False).to(device);# 判别器 class Discriminator(nn.Module): def __init__(self, channels=3): super(Discriminator, self).__init__() # def discriminator_block(in_filters, out_filters, stride, normalize, dropout, spectral): # 谱范数正则化,提高泛化能力 """Returns layers of each discriminator block""" # if spectral: layers = [nn.utils.spectral_norm(nn.Conv2d(in_filters, out_filters, 3, stride, 1), n_power_iterations=2)] else: layers = [nn.Conv2d(in_filters, out_filters, 3, stride, 1)] if normalize: layers.append(nn.InstanceNorm2d(out_filters)) layers.append(nn.LeakyReLU(0.2, inplace=True)) if dropout: layers.append(nn.Dropout(p=0.5)) return layers layers = [] in_filters = channels # 总共有四次卷积操作,因为没有设置dropout(随机设置一些值为0避免过拟合)和spectral所以此处并没有进行 for out_filters, stride, normalize, dropout, spectral in [(64, 2, False, 0, 0), (128, 2, True, 0, 0), (256, 2, True, 0, 0), (512, 1, True, 0, 0)]: layers.extend(discriminator_block(in_filters, out_filters, stride, normalize, dropout, spectral)) in_filters = out_filters layers.append(nn.Conv2d(out_filters, 1, 3, 1, 1)) self.model = nn.Sequential(*layers) def forward(self, img): return self.model(img)
这代码实现的是GAN(生成对抗网络)的损失函数。其中,criterion_adv是定义的损失函数,输入参数为生成器生成的图像(gen_parts)和真实图像(real),输出为损失值。
real = torch.FloatTensor(batch_size, *patch).fill_(1.0).requires_grad_(False).to(device)
real表示真实的图像,它是一个batch_size大小的张量,*patch表示图像尺寸,这里是通过*patch解包得到的。fill_(1.0)表示将张量中的所有元素设置为1.0,即真实图像的标签为1(代表真实图像)。requires_grad_(False)表示该张量不需要计算梯度,to(device)表示将张量放到指定的设备上,这里是放到GPU上(如果有的话)。
class Discriminator(nn.Module):
def __init__(self, channels=3):
super(Discriminator, self).__init__()
# ...
# 省略了一些代码
# ...
self.model = nn.Sequential(*layers)
def forward(self, img):
return self.model(img)
这里定义了一个判别器类(Discriminator),它继承自nn.Module类。在类的初始化函数中,通过调用discriminator_block函数定义了不同的卷积块,最终得到了一个包含多个卷积层的模型。在forward函数中,将输入的图像(img)通过模型进行前向传播,得到模型的输出结果。
阅读全文