生成用双相lstm算法对栅格地图进行路径规划的代码
时间: 2024-05-16 20:13:12 浏览: 135
以下是一个使用双向LSTM算法对栅格地图进行路径规划的代码示例:
首先,需要导入必要的库:
```python
import numpy as np
import tensorflow as tf
```
接下来,定义一些常量和超参数:
```python
# 栅格地图的宽度和高度
MAP_WIDTH = 20
MAP_HEIGHT = 20
# LSTM层的数量和每层的神经元数
NUM_LSTM_LAYERS = 2
NUM_LSTM_UNITS = 128
# 训练数据集的大小和批次大小
TRAINING_SET_SIZE = 1000
BATCH_SIZE = 32
# 学习率和迭代次数
LEARNING_RATE = 0.001
NUM_ITERATIONS = 1000
```
定义一个函数来生成随机的栅格地图和起点终点:
```python
def generate_random_map():
# 生成一个随机的栅格地图,其中0表示空地,1表示障碍物
map = np.random.randint(2, size=(MAP_WIDTH, MAP_HEIGHT))
# 生成起点和终点
start = (np.random.randint(MAP_WIDTH), np.random.randint(MAP_HEIGHT))
end = (np.random.randint(MAP_WIDTH), np.random.randint(MAP_HEIGHT))
# 如果起点或终点是障碍物,则重新生成
while map[start] == 1 or map[end] == 1:
start = (np.random.randint(MAP_WIDTH), np.random.randint(MAP_HEIGHT))
end = (np.random.randint(MAP_WIDTH), np.random.randint(MAP_HEIGHT))
return map, start, end
```
定义一个函数来生成训练数据集:
```python
def generate_training_set():
# 生成TRAINING_SET_SIZE个随机的栅格地图和起点终点
maps = []
starts = []
ends = []
for i in range(TRAINING_SET_SIZE):
map, start, end = generate_random_map()
maps.append(map)
starts.append(start)
ends.append(end)
# 将栅格地图和起点终点转换为输入和标签
inputs = np.array(maps).reshape(TRAINING_SET_SIZE, MAP_WIDTH * MAP_HEIGHT)
labels = np.array(list(zip(starts, ends)))
return inputs, labels
```
定义一个函数来创建模型:
```python
def create_model():
# 定义输入和输出的占位符
inputs = tf.placeholder(tf.float32, shape=[None, MAP_WIDTH * MAP_HEIGHT])
labels = tf.placeholder(tf.int32, shape=[None, 2])
# 将输入reshape为二维矩阵
inputs_reshaped = tf.reshape(inputs, [-1, MAP_WIDTH, MAP_HEIGHT])
# 定义LSTM层
forward_lstm_cells = [tf.nn.rnn_cell.BasicLSTMCell(NUM_LSTM_UNITS) for _ in range(NUM_LSTM_LAYERS)]
backward_lstm_cells = [tf.nn.rnn_cell.BasicLSTMCell(NUM_LSTM_UNITS) for _ in range(NUM_LSTM_LAYERS)]
outputs, state_fw, state_bw = tf.nn.static_bidirectional_rnn(forward_lstm_cells, backward_lstm_cells, tf.unstack(inputs_reshaped, axis=1), dtype=tf.float32)
# 定义输出层
output_w = tf.Variable(tf.random_normal([NUM_LSTM_UNITS * 2, 2]))
output_b = tf.Variable(tf.random_normal([2]))
logits = tf.matmul(outputs[-1], output_w) + output_b
# 定义损失函数和优化器
loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels))
optimizer = tf.train.AdamOptimizer(LEARNING_RATE).minimize(loss)
# 返回模型的输入、输出和优化器
return inputs, labels, logits, optimizer
```
定义一个函数来训练模型:
```python
def train_model():
# 创建模型
inputs, labels, logits, optimizer = create_model()
# 创建会话
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
# 训练模型
for i in range(NUM_ITERATIONS):
# 生成一批训练数据
inputs_batch, labels_batch = generate_training_set()
# 运行优化器
_, loss_value = sess.run([optimizer, loss], feed_dict={inputs: inputs_batch, labels: labels_batch})
# 每100次迭代输出一次损失函数的值
if i % 100 == 0:
print("Iteration {}: loss={}".format(i, loss_value))
```
最后调用train_model()函数来训练模型:
```python
train_model()
```
这是一个简单的双向LSTM算法的代码示例,你可以根据需要进行修改和优化。
阅读全文