如何关掉tcp 服务器的listen 套接字

时间: 2023-05-23 22:07:33 浏览: 294
可以使用socket库中的close()函数来关闭tcp服务器的listen套接字。具体步骤如下: 1.获取监听套接字的文件描述符fd。 2.调用close(fd)函数关闭该套接字。 示例代码: ``` import socket HOST = '' # 监听所有可用的网络接口 PORT = 8888 # 监听的端口号 # 创建套接字 listen_fd = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # 设置socket选项,允许地址重用 listen_fd.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) # 绑定地址和端口号 listen_fd.bind((HOST, PORT)) # 开始监听 listen_fd.listen(5) print('Server has started and is listening on port', PORT) # 获取套接字的文件描述符fd fd = listen_fd.fileno() # 关闭监听套接字 listen_fd.close() print('Server has stopped listening on port', PORT) ``` 注意,一旦关闭了套接字,就无法再接受客户端连接。如果需要重新监听,需要重新创建一个套接字并开始监听。
相关问题

你了解TCP套接字编程吗

作为AI语言模型,我可以为您提供TCP套接字编程的基本概念和常用API,但是我没有实际编程经验。 TCP套接字编程是一种基于TCP协议的网络编程方法,它允许程序在网络上建立连接、发送和接收数据。TCP套接字编程需要使用一些API,例如socket()、bind()、listen()、accept()、connect()、send()和recv()等,这些API可以在不同的编程语言中进行调用。 在TCP套接字编程中,客户端和服务器之间的通信基于套接字(socket)。套接字是一个网络通信的端点,它由IP地址和端口号组成。在TCP套接字编程中,服务器程序首先创建一个套接字并绑定到一个IP地址和端口号上,然后等待客户端的连接请求。客户端程序创建一个套接字并连接到服务器的IP地址和端口号上。 一旦建立连接,客户端和服务器之间就可以通过套接字发送和接收数据。发送数据使用send()函数,接收数据使用recv()函数。在服务器端,可以使用accept()函数接受客户端的连接请求,并在新的套接字上与客户端进行通信。 TCP套接字编程可以用于实现各种网络应用程序,例如Web服务器、FTP客户端和服务器、邮件客户端和服务器等。

tcp套接字c语言代码

### 回答1: 以下是 TCP 套接字编程中使用 C 语言的示例代码: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/socket.h> #include <arpa/inet.h> #include <unistd.h> #define SERVER_PORT 8080 int main(int argc, char *argv[]) { int sockfd; struct sockaddr_in servaddr; // 创建套接字 sockfd = socket(AF_INET, SOCK_STREAM, 0); if (sockfd == -1) { perror("socket"); exit(EXIT_FAILURE); } // 配置服务器地址信息 memset(&servaddr, 0, sizeof(servaddr)); servaddr.sin_family = AF_INET; servaddr.sin_port = htons(SERVER_PORT); if (inet_pton(AF_INET, "127.0.0.1", &servaddr.sin_addr) <= 0) { perror("inet_pton"); exit(EXIT_FAILURE); } // 连接服务器 if (connect(sockfd, (struct sockaddr *)&servaddr, sizeof(servaddr)) == -1) { perror("connect"); exit(EXIT_FAILURE); } // 发送数据 char *message = "Hello, world!"; if (send(sockfd, message, strlen(message), 0) == -1) { perror("send"); exit(EXIT_FAILURE); } // 接收数据 char buffer[1024]; int n; if ((n = recv(sockfd, buffer, sizeof(buffer) - 1, 0)) == -1) { perror("recv"); exit(EXIT_FAILURE); } buffer[n] = '\0'; printf("Received message: %s\n", buffer); // 关闭套接字 close(sockfd); return 0; } ``` 该程序通过创建套接字、连接服务器、发送数据、接收数据和关闭套接字等步骤实现了 TCP 套接字编程中的基本操作。其中,socket() 函数用于创建套接字,connect() 函数用于连接服务器,send() 函数用于发送数据,recv() 函数用于接收数据,close() 函数用于关闭套接字。 ### 回答2: TCP套接字是一种用于实现网络通信的协议。以下是一个简单的TCP套接字的C语言代码示例: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #include <arpa/inet.h> #define MAX_BUFFER_SIZE 1024 int main() { int serverSocket, clientSocket; struct sockaddr_in serverAddr, clientAddr; char buffer[MAX_BUFFER_SIZE]; // 创建套接字 if ((serverSocket = socket(AF_INET, SOCK_STREAM, 0)) == -1) { perror("套接字创建失败"); exit(EXIT_FAILURE); } // 设置服务器地址 serverAddr.sin_family = AF_INET; serverAddr.sin_addr.s_addr = inet_addr("127.0.0.1"); // 服务器IP地址 serverAddr.sin_port = htons(8888); // 服务器端口号 // 绑定套接字到服务器地址 if (bind(serverSocket, (struct sockaddr *)&serverAddr, sizeof(serverAddr)) == -1) { perror("绑定失败"); exit(EXIT_FAILURE); } // 监听连接 if (listen(serverSocket, 5) == -1) { perror("监听失败"); exit(EXIT_FAILURE); } printf("服务器等待客户端连接...\n"); // 接受客户端连接 socklen_t clientAddrLen = sizeof(clientAddr); if ((clientSocket = accept(serverSocket, (struct sockaddr *)&clientAddr, &clientAddrLen)) == -1) { perror("接受连接失败"); exit(EXIT_FAILURE); } printf("客户端连接成功\n"); // 接收和发送数据 while (1) { memset(buffer, 0, sizeof(buffer)); // 接收数据 if (recv(clientSocket, buffer, sizeof(buffer), 0) == -1) { perror("接收数据失败"); exit(EXIT_FAILURE); } printf("接收到客户端消息:%s\n", buffer); // 发送数据 if (send(clientSocket, buffer, strlen(buffer), 0) == -1) { perror("发送数据失败"); exit(EXIT_FAILURE); } if (strcmp(buffer, "quit\n") == 0) { break; } } // 关闭套接字 close(clientSocket); close(serverSocket); return 0; } ``` 这段代码演示了一个简单的TCP服务器,它创建了一个套接字,绑定到本地IP地址和端口8888,并监听连接。一旦有客户端连接成功,服务器将接收来自客户端的消息,并发送相同的消息回复客户端。如果接收到的消息是"quit\n",服务器将关闭连接。 ### 回答3: TCP套接字是一种用于在计算机网络中进行可靠通信的协议。下面是一个利用C语言编写的TCP套接字的示例代码,用于在客户端和服务器之间进行通信。 (1)服务器端代码: ```C #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/types.h> #include <sys/socket.h> #include <netinet/in.h> int main() { int sockfd, newsockfd, portno, clilen; char buffer[256]; struct sockaddr_in serv_addr, cli_addr; int n; sockfd = socket(AF_INET, SOCK_STREAM, 0); if (sockfd < 0) { perror("Error opening socket"); exit(1); } bzero((char *) &serv_addr, sizeof(serv_addr)); portno = 1234; serv_addr.sin_family = AF_INET; serv_addr.sin_addr.s_addr = INADDR_ANY; serv_addr.sin_port = htons(portno); if (bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0) { perror("Error on binding"); exit(1); } listen(sockfd, 5); clilen = sizeof(cli_addr); newsockfd = accept(sockfd, (struct sockaddr *) &cli_addr, &clilen); if (newsockfd < 0) { perror("Error on accept"); exit(1); } bzero(buffer,256); n = read(newsockfd, buffer, 255); if (n < 0) { perror("Error reading from socket"); exit(1); } printf("Here is the message: %s\n",buffer); n = write(newsockfd,"I got your message",18); if (n < 0) { perror("Error writing to socket"); exit(1); } close(newsockfd); close(sockfd); return 0; } ``` (2)客户端代码: ```C #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/types.h> #include <sys/socket.h> #include <netinet/in.h> #include <netdb.h> int main() { int sockfd, portno, n; struct sockaddr_in serv_addr; struct hostent *server; char buffer[256]; portno = 1234; sockfd = socket(AF_INET, SOCK_STREAM, 0); if (sockfd < 0) { perror("ERROR opening socket"); exit(1); } server = gethostbyname("localhost"); if (server == NULL) { perror("Error, no such host"); exit(1); } bzero((char *) &serv_addr, sizeof(serv_addr)); serv_addr.sin_family = AF_INET; bcopy((char *)server->h_addr, (char *)&serv_addr.sin_addr.s_addr, server->h_length); serv_addr.sin_port = htons(portno); if (connect(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0) { perror("Error connecting"); exit(1); } printf("Please enter the message: "); bzero(buffer, 256); fgets(buffer, 255, stdin); n = write(sockfd, buffer, strlen(buffer)); if (n < 0) { perror("Error writing to socket"); exit(1); } bzero(buffer, 256); n = read(sockfd, buffer, 255); if (n < 0) { perror("Error reading from socket"); exit(1); } printf("%s\n",buffer); close(sockfd); return 0; } ``` 以上就是一个简单的TCP套接字的C语言代码示例,用于在服务器端和客户端之间进行通信。

相关推荐

最新推荐

recommend-type

python使用socket创建tcp服务器和客户端

- 使用`socket(AF_INET, SOCK_STREAM)`创建一个TCP服务器套接字,`AF_INET`表示使用IPv4地址,`SOCK_STREAM`表示使用TCP协议。 - 使用`bind(ADDR)`将套接字与指定的IP地址(HOST)和端口号(PORT)绑定。 - 使用`...
recommend-type

TCP socket 套接字传送文件

【TCP套接字传送文件】 TCP(Transmission Control Protocol)是一种面向连接的、可靠的传输协议,广泛应用于网络通信,如文件传输。通过TCP/IP协议,我们可以利用socket接口在服务器和客户端之间建立连接并进行文件...
recommend-type

TCP服务器程序 服务器IP地址 服务器端口

11. **关闭套接字(CloseSocket)**:在第59行,`closesocket(connectionFd);`关闭与客户端的连接,释放资源。 整个程序通过循环不断监听新的连接请求,当有新的连接到来时,服务器获取当前时间,将其发送给客户端...
recommend-type

基于单片机的瓦斯监控系统硬件设计.doc

"基于单片机的瓦斯监控系统硬件设计" 在煤矿安全生产中,瓦斯监控系统扮演着至关重要的角色,因为瓦斯是煤矿井下常见的有害气体,高浓度的瓦斯不仅会降低氧气含量,还可能引发爆炸事故。基于单片机的瓦斯监控系统是一种现代化的监测手段,它能够实时监测瓦斯浓度并及时发出预警,保障井下作业人员的生命安全。 本设计主要围绕以下几个关键知识点展开: 1. **单片机技术**:单片机(Microcontroller Unit,MCU)是系统的核心,它集成了CPU、内存、定时器/计数器、I/O接口等多种功能,通过编程实现对整个系统的控制。在瓦斯监控器中,单片机用于采集数据、处理信息、控制报警系统以及与其他模块通信。 2. **瓦斯气体检测**:系统采用了气敏传感器来检测瓦斯气体的浓度。气敏传感器是一种对特定气体敏感的元件,它可以将气体浓度转换为电信号,供单片机处理。在本设计中,选择合适的气敏传感器至关重要,因为它直接影响到检测的精度和响应速度。 3. **模块化设计**:为了便于系统维护和升级,单片机被设计成模块化结构。每个功能模块(如传感器接口、报警系统、电源管理等)都独立运行,通过单片机进行协调。这种设计使得系统更具有灵活性和扩展性。 4. **报警系统**:当瓦斯浓度达到预设的危险值时,系统会自动触发报警装置,通常包括声音和灯光信号,以提醒井下工作人员迅速撤离。报警阈值可根据实际需求进行设置,并且系统应具有一定的防误报能力。 5. **便携性和安全性**:考虑到井下环境,系统设计需要注重便携性,体积小巧,易于携带。同时,系统的外壳和内部电路设计必须符合矿井的安全标准,能抵抗井下潮湿、高温和电磁干扰。 6. **用户交互**:系统提供了灵敏度调节和检测强度调节功能,使得操作员可以根据井下环境变化进行参数调整,确保监控的准确性和可靠性。 7. **电源管理**:由于井下电源条件有限,瓦斯监控系统需具备高效的电源管理,可能包括电池供电和节能模式,确保系统长时间稳定工作。 通过以上设计,基于单片机的瓦斯监控系统实现了对井下瓦斯浓度的实时监测和智能报警,提升了煤矿安全生产的自动化水平。在实际应用中,还需要结合软件部分,例如数据采集、存储和传输,以实现远程监控和数据分析,进一步提高系统的综合性能。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:Python环境变量配置从入门到精通:Win10系统下Python环境变量配置完全手册

![:Python环境变量配置从入门到精通:Win10系统下Python环境变量配置完全手册](https://img-blog.csdnimg.cn/20190105170857127.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzI3Mjc2OTUx,size_16,color_FFFFFF,t_70) # 1. Python环境变量简介** Python环境变量是存储在操作系统中的特殊变量,用于配置Python解释器和
recommend-type

electron桌面壁纸功能

Electron是一个开源框架,用于构建跨平台的桌面应用程序,它基于Chromium浏览器引擎和Node.js运行时。在Electron中,你可以很容易地处理桌面环境的各个方面,包括设置壁纸。为了实现桌面壁纸的功能,你可以利用Electron提供的API,如`BrowserWindow` API,它允许你在窗口上设置背景图片。 以下是一个简单的步骤概述: 1. 导入必要的模块: ```javascript const { app, BrowserWindow } = require('electron'); ``` 2. 在窗口初始化时设置壁纸: ```javas
recommend-type

基于单片机的流量检测系统的设计_机电一体化毕业设计.doc

"基于单片机的流量检测系统设计文档主要涵盖了从系统设计背景、硬件电路设计、软件设计到实际的焊接与调试等全过程。该系统利用单片机技术,结合流量传感器,实现对流体流量的精确测量,尤其适用于工业过程控制中的气体流量检测。" 1. **流量检测系统背景** 流量是指单位时间内流过某一截面的流体体积或质量,分为瞬时流量(体积流量或质量流量)和累积流量。流量测量在热电、石化、食品等多个领域至关重要,是过程控制四大参数之一,对确保生产效率和安全性起到关键作用。自托里拆利的差压式流量计以来,流量测量技术不断发展,18、19世纪出现了多种流量测量仪表的初步形态。 2. **硬件电路设计** - **总体方案设计**:系统以单片机为核心,配合流量传感器,设计显示单元和报警单元,构建一个完整的流量检测与监控系统。 - **工作原理**:单片机接收来自流量传感器的脉冲信号,处理后转化为流体流量数据,同时监测气体的压力和温度等参数。 - **单元电路设计** - **单片机最小系统**:提供系统运行所需的电源、时钟和复位电路。 - **显示单元**:负责将处理后的数据以可视化方式展示,可能采用液晶显示屏或七段数码管等。 - **流量传感器**:如涡街流量传感器或电磁流量传感器,用于捕捉流量变化并转换为电信号。 - **总体电路**:整合所有单元电路,形成完整的硬件设计方案。 3. **软件设计** - **软件端口定义**:分配单片机的输入/输出端口,用于与硬件交互。 - **程序流程**:包括主程序、显示程序和报警程序,通过流程图详细描述了每个程序的执行逻辑。 - **软件调试**:通过调试工具和方法确保程序的正确性和稳定性。 4. **硬件电路焊接与调试** - **焊接方法与注意事项**:强调焊接技巧和安全事项,确保电路连接的可靠性。 - **电路焊接与装配**:详细步骤指导如何组装电路板和连接各个部件。 - **电路调试**:使用仪器设备检查电路性能,排除故障,验证系统功能。 5. **系统应用与意义** 随着技术进步,单片机技术、传感器技术和微电子技术的结合使得流量检测系统具备更高的精度和可靠性,对于优化工业生产过程、节约资源和提升经济效益有着显著作用。 6. **结论与致谢** 文档结尾部分总结了设计成果,对参与项目的人表示感谢,并可能列出参考文献以供进一步研究。 7. **附录** 包含程序清单和电路总图,提供了具体实现细节和设计蓝图。 此设计文档为一个完整的机电一体化毕业设计项目,详细介绍了基于单片机的流量检测系统从概念到实施的全过程,对于学习单片机应用和流量测量技术的读者具有很高的参考价值。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

:Python环境变量配置实战:Win10系统下Python环境变量配置详解

![python配置环境变量win10](https://img-blog.csdnimg.cn/20190105170857127.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzI3Mjc2OTUx,size_16,color_FFFFFF,t_70) # 1. Python环境变量配置概述 环境变量是计算机系统中存储和管理配置信息的特殊变量。在Python中,环境变量用于指定Python解释器和库的安装路径,以及其他影响