dataset = train_test_split(data, label, random_state=111, train_size=0.8, test_size=0.2) # split
时间: 2023-11-11 13:03:16 浏览: 160
段代码使用了scikit-learn库中的train_test_split函数,用于将数据集分为训练集和测试集。其中,data和label分别代表数据和标签,random_state是随机数种子,train_size和test_size分别代表训练集和测试集的比例。在这个例子中,数据集被分成了训练集和验证集,分别用X_train, X_valid, y_train, y_valid表示。其中,X代表数据,y代表标签。这个函数的作用是为了在机器学习模型训练时,用训练集训练模型,用测试集验证模型的泛化能力。
相关问题
# seeds = [2222, 5, 4, 2, 209, 4096, 2048, 1024, 2015, 1015, 820]#11 seeds = [2]#2 num_model_seed = 1 oof = np.zeros(X_train.shape[0]) prediction = np.zeros(X_test.shape[0]) feat_imp_df = pd.DataFrame({'feats': feature_name, 'imp': 0}) parameters = { 'learning_rate': 0.008, 'boosting_type': 'gbdt', 'objective': 'binary', 'metric': 'auc', 'num_leaves': 63, 'feature_fraction': 0.8,#原来0.8 'bagging_fraction': 0.8, 'bagging_freq': 5,#5 'seed': 2, 'bagging_seed': 1, 'feature_fraction_seed': 7, 'min_data_in_leaf': 20, 'verbose': -1, 'n_jobs':4 } fold = 5 for model_seed in range(num_model_seed): print(seeds[model_seed],"--------------------------------------------------------------------------------------------") oof_cat = np.zeros(X_train.shape[0]) prediction_cat = np.zeros(X_test.shape[0]) skf = StratifiedKFold(n_splits=fold, random_state=seeds[model_seed], shuffle=True) for index, (train_index, test_index) in enumerate(skf.split(X_train, y)): train_x, test_x, train_y, test_y = X_train[feature_name].iloc[train_index], X_train[feature_name].iloc[test_index], y.iloc[train_index], y.iloc[test_index] dtrain = lgb.Dataset(train_x, label=train_y) dval = lgb.Dataset(test_x, label=test_y) lgb_model = lgb.train( parameters, dtrain, num_boost_round=10000, valid_sets=[dval], early_stopping_rounds=100, verbose_eval=100, ) oof_cat[test_index] += lgb_model.predict(test_x,num_iteration=lgb_model.best_iteration) prediction_cat += lgb_model.predict(X_test,num_iteration=lgb_model.best_iteration) / fold feat_imp_df['imp'] += lgb_model.feature_importance() del train_x del test_x del train_y del test_y del lgb_model oof += oof_cat / num_model_seed prediction += prediction_cat / num_model_seed gc.collect()解释上面的python代码
这段 Python 代码实现了一个基于 LightGBM 模型的交叉验证和预测过程。其中的主要参数和步骤如下:
1. `seeds`: 随机数种子集合,用于交叉验证时的随机划分数据集。
2. `num_model_seed`: 随机数种子的数量,用于多次随机划分数据集并训练多个模型,以降低随机划分的影响。
3. `oof` 和 `prediction`: 用于存储交叉验证和预测结果的数组,分别表示 out-of-fold 和测试集的结果。
4. `parameters`: LightGBM 模型的超参数,包括学习率、树的数量、特征采样比例等等。
5. `fold`: 交叉验证的折数。
6. `StratifiedKFold`: 用于划分训练集和验证集的类,保证每个折中的正负样本比例相同。
7. `lgb.Dataset`: 用于将数据转换成 LightGBM 能够读取的数据格式。
8. `lgb.train`: 用于训练 LightGBM 模型,并在验证集上进行早停。
9. `feat_imp_df`: 用于存储特征重要性的 DataFrame。
10. `gc.collect()`: 用于清理内存,避免内存泄露。
这段代码的主要流程是:根据随机数种子集合和折数,进行多次交叉验证和训练,并将每个模型的 out-of-fold 结果和测试集结果进行平均,作为最终的预测结果。同时,每次训练都会记录特征重要性,最后将所有模型的特征重要性进行累加,以便后续分析特征的重要性。
编写一个数据位置为D:/xinpython/BTM/data1.xlsx的Bert文本分类模型。并将最后输出的模型结果导出到D:/xinpython/BTM/topic1.xlsx
以下是一个简单的BERT文本分类示例,包括读取数据、预处理、模型训练和保存结果的过程。
首先,需要安装必要的库和下载预训练的BERT模型:
```python
!pip install pandas xlrd openpyxl torch transformers
!wget -P ./model/ https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased.tar.gz
!tar -xzf ./model/bert-base-uncased.tar.gz -C ./model/
```
接着,读取数据并进行预处理,包括分词、编码和划分训练集和测试集:
```python
import pandas as pd
import torch
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from transformers import BertTokenizer
# 读取数据
df = pd.read_excel('D:/xinpython/BTM/data1.xlsx')
sentences = df['text'].values
labels = df['label'].values
# 加载预训练的BERT模型和分词器
tokenizer = BertTokenizer.from_pretrained('model/bert-base-uncased', do_lower_case=True)
# 对文本进行分词和编码
input_ids = []
attention_masks = []
for sent in sentences:
encoded_dict = tokenizer.encode_plus(sent, add_special_tokens=True, max_length=64, pad_to_max_length=True, return_attention_mask=True, return_tensors='pt')
input_ids.append(encoded_dict['input_ids'])
attention_masks.append(encoded_dict['attention_mask'])
input_ids = torch.cat(input_ids, dim=0)
attention_masks = torch.cat(attention_masks, dim=0)
labels = torch.tensor(labels)
# 划分训练集和测试集
dataset = TensorDataset(input_ids, attention_masks, labels)
train_size = int(0.8 * len(dataset))
test_size = len(dataset) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(dataset, [train_size, test_size])
```
然后,定义BERT分类模型并进行训练:
```python
from transformers import BertForSequenceClassification, AdamW, get_linear_schedule_with_warmup
# 定义模型
model = BertForSequenceClassification.from_pretrained('model/bert-base-uncased', num_labels=2, output_attentions=False, output_hidden_states=False)
# 定义优化器和学习率调度器
optimizer = AdamW(model.parameters(), lr=2e-5, eps=1e-8)
epochs = 4
total_steps = len(train_dataset) * epochs
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=0, num_training_steps=total_steps)
# 定义训练函数
def train(model, dataloader, optimizer, scheduler):
model.train()
for step, batch in enumerate(dataloader):
input_ids = batch[0].to(device)
attention_masks = batch[1].to(device)
labels = batch[2].to(device)
model.zero_grad()
outputs = model(input_ids, token_type_ids=None, attention_mask=attention_masks, labels=labels)
loss = outputs[0]
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
scheduler.step()
# 定义测试函数
def evaluate(model, dataloader):
model.eval()
total_accuracy = 0
total_loss = 0
nb_eval_steps = 0
for batch in dataloader:
input_ids = batch[0].to(device)
attention_masks = batch[1].to(device)
labels = batch[2].to(device)
with torch.no_grad():
outputs = model(input_ids, token_type_ids=None, attention_mask=attention_masks, labels=labels)
logits = outputs[1]
total_loss += outputs[0].item()
logits = logits.detach().cpu().numpy()
label_ids = labels.to('cpu').numpy()
total_accuracy += flat_accuracy(logits, label_ids)
nb_eval_steps += 1
avg_accuracy = total_accuracy / nb_eval_steps
avg_loss = total_loss / nb_eval_steps
return avg_accuracy, avg_loss
# 训练模型并保存
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
train_dataloader = DataLoader(train_dataset, sampler=RandomSampler(train_dataset), batch_size=32)
test_dataloader = DataLoader(test_dataset, sampler=SequentialSampler(test_dataset), batch_size=32)
for epoch in range(epochs):
train(model, train_dataloader, optimizer, scheduler)
accuracy, loss = evaluate(model, test_dataloader)
print('Epoch {} - Accuracy: {:.2f}% - Loss: {:.4f}'.format(epoch + 1, accuracy * 100, loss))
torch.save(model.state_dict(), 'bert_model.pt')
```
最后,加载保存的模型并对新数据进行分类,将结果导出到Excel文件:
```python
# 加载保存的模型
model = BertForSequenceClassification.from_pretrained('model/bert-base-uncased', num_labels=2, output_attentions=False, output_hidden_states=False)
model.load_state_dict(torch.load('bert_model.pt'))
model.to(device)
# 对新数据进行分类
df = pd.read_excel('D:/xinpython/BTM/topic1.xlsx')
sentences = df['text'].values
input_ids = []
attention_masks = []
for sent in sentences:
encoded_dict = tokenizer.encode_plus(sent, add_special_tokens=True, max_length=64, pad_to_max_length=True, return_attention_mask=True, return_tensors='pt')
input_ids.append(encoded_dict['input_ids'])
attention_masks.append(encoded_dict['attention_mask'])
input_ids = torch.cat(input_ids, dim=0)
attention_masks = torch.cat(attention_masks, dim=0)
dataset = TensorDataset(input_ids, attention_masks)
dataloader = DataLoader(dataset, sampler=SequentialSampler(dataset), batch_size=32)
model.eval()
predictions = []
for batch in dataloader:
input_ids = batch[0].to(device)
attention_masks = batch[1].to(device)
with torch.no_grad():
outputs = model(input_ids, token_type_ids=None, attention_mask=attention_masks)
logits = outputs[0]
logits = logits.detach().cpu().numpy()
predictions.extend(logits.argmax(axis=1))
# 将结果导出到Excel文件
df['label'] = predictions
df.to_excel('D:/xinpython/BTM/topic1.xlsx', index=False)
```
阅读全文