%% Starting of EXEM training % PCA learning [mean_Xbase_PCA, V] = do_pca(Xbase); Xbase = bsxfun(@minus, Xbase, mean_Xbase_PCA); Xval = bsxfun(@minus, Xval, mean_Xbase_PCA);
时间: 2024-04-13 13:24:46 浏览: 134
这段代码是EXEM训练的开始部分。首先进行PCA(Principal Component Analysis)学习。
1. `do_pca`函数用于对训练数据集`Xbase`进行PCA降维。返回值`mean_Xbase_PCA`是训练数据集`Xbase`的均值,并且`V`是PCA变换的投影矩阵。
2. 接下来,对训练数据集`Xbase`和验证数据集`Xval`进行均值归一化。通过使用`bsxfun`函数,将训练数据集和验证数据集中的每个样本减去之前计算得到的均值`mean_Xbase_PCA`,以实现均值归一化的操作。
这段代码的目的是在EXEM训练过程中,首先对训练数据集进行PCA降维,然后将训练数据集和验证数据集进行均值归一化,以便后续的模型训练和评估。
相关问题
%% Starting of EXEM training [mean_Xtr_PCA, V] = do_pca(Xtr); Xtr = bsxfun(@minus, Xtr, mean_Xtr_PCA); Xte = bsxfun(@minus, Xte, mean_Xtr_PCA); % SVR kernel Ker_S = [(1 : length(label_S))', exp(-gamma * pdist2_fast(Sig_S, Sig_S) .^ 2)]; Ker_U = [(1 : length(label_U))', exp(-gamma * pdist2_fast(Sig_U, Sig_S) .^ 2)]; % PCA projection mapped_Xtr = Xtr * V(:, 1 : pca_d); mapped_Xte = Xte * V(:, 1 : pca_d); [mean_Xtr, std_Xtr] = compute_class_stat(Ytr, mapped_Xtr); avg_std_Xtr = mean(std_Xtr, 1); mean_S_rec = zeros(size(Sig_S, 1), pca_d); mean_U_rec = zeros(size(Sig_U, 1), pca_d); mean_U = zeros(size(Sig_U, 1), pca_d); regressors = cell(1, pca_d);
这段代码是EXEM(Extended Exemplar-based Method)训练的开始部分。
首先,使用函数 do_pca 对 Xtr 进行主成分分析(PCA),得到均值 mean_Xtr_PCA 和变换矩阵 V。然后,使用 bsxfun 函数对 Xtr 和 Xte 进行均值归一化,减去 mean_Xtr_PCA。
接下来,构建 SVR(Support Vector Regression)的核矩阵。通过计算 Sig_S 和 Sig_U 之间的欧氏距离的平方,并乘以 -gamma,然后应用指数函数,得到核矩阵 Ker_S 和 Ker_U。其中,Ker_S 包含已知类别样本的索引和对应的核值,Ker_U 包含未知类别样本的索引和对应的核值。
然后,使用 PCA 投影将 Xtr 和 Xte 转换到降维空间。通过将 Xtr 和 Xte 分别乘以前 pca_d 列的特征向量矩阵 V,得到投影后的数据 mapped_Xtr 和 mapped_Xte。
接下来,使用函数 compute_class_stat 计算 Ytr 和 mapped_Xtr 之间的类别统计信息,包括每个类别的均值 mean_Xtr 和标准差 std_Xtr。然后,计算所有类别的平均标准差 avg_std_Xtr。
最后,初始化用于记录重构样本和回归器的变量。mean_S_rec 和 mean_U_rec 是用于重构的已知类别和未知类别样本的均值,mean_U 是未知类别样本的均值,regressors 是用于回归的回归器的单元格数组。
for c = 1 : length(opt.C) for n = 1 : length(opt.nu) cur_C = opt.C(c); cur_nu = opt.nu(n); mean_Xbase_rec = zeros(size(Sig_Ybase, 1), opt.pca_d(d)); mean_Xval_rec = zeros(size(Sig_Yval, 1), opt.pca_d(d)); mean_Xval = zeros(size(Sig_Yval, 1), opt.pca_d(d)); parfor j = 1 : opt.pca_d(d) % SVR learning and testing regressor = svmtrain(mean_Xbase(:, j), Ker_base, ['-s 4 -t 4 -c ' num2str(cur_C) ' -n ' num2str(cur_nu) ' -m 10000']); mean_Xbase_rec(:, j) = svmpredict(mean_Xbase(:, j), Ker_base, regressor); mean_Xval_rec(:, j) = svmpredict(mean_Xval(:, j), Ker_val, regressor); end [dis_eu, dis_seu, acc_eu, acc_seu] = test_EXEM(mapped_Xval, Yval, mean_Xval_rec, avg_std_Xbase); val_dis_eu(c, n, g, d) = val_dis_eu(c, n, g, d) + dis_eu / nr_fold; val_dis_seu(c, n, g, d) = val_dis_seu(c, n, g, d) + dis_seu / nr_fold; val_acc_eu(c, n, g, d) = val_acc_eu(c, n, g, d) + acc_eu / nr_fold; val_acc_seu(c, n, g, d) = val_acc_seu(c, n, g, d) + acc_seu / nr_fold; end end
这段代码是用于在EXEM训练中进行SVR(Support Vector Regression)学习和评估的部分。在C和nu的循环中,对每个组合进行以下操作:
1. 设置当前的C和nu参数值为`cur_C`和`cur_nu`。
2. 初始化用于存储重构结果的矩阵`mean_Xbase_rec`和`mean_Xval_rec`,以及用于存储验证数据集平均值的矩阵`mean_Xval`。
3. 并行地对每个PCA维度进行以下操作:
a. 使用`svmtrain`函数,基于训练数据集的PCA降维结果`mean_Xbase(:, j)`和训练数据集的核矩阵`Ker_base`进行SVR学习。使用给定的C和nu参数进行模型训练。
b. 使用`svmpredict`函数,基于训练得到的SVR模型,对训练数据集和验证数据集中的PCA降维结果进行预测,得到重构后的结果`mean_Xbase_rec(:, j)`和`mean_Xval_rec(:, j)`。
4. 调用`test_EXEM`函数,对重构后的验证数据集、真实类别标签和平均标准差进行评估。返回值包括欧氏距离(dis_eu)、标准化欧氏距离(dis_seu)、准确率(acc_eu)和标准化准确率(acc_seu)。
5. 将评估结果加权平均到相应的结果矩阵中。`val_dis_eu`、`val_dis_seu`、`val_acc_eu`和`val_acc_seu`是用于存储不同参数组合下的评估结果的多维矩阵。
这段代码的目的是在EXEM训练过程中,对不同参数组合下的SVR模型进行学习和评估,并将评估结果存储在相应的结果矩阵中,以备后续使用。
阅读全文