CNN-lstm python
时间: 2023-10-04 15:06:37 浏览: 208
要在Python中实现CNN-LSTM模型,首先需要导入torch和torch.nn库。然后,定义CNN层和LSTM层。CNN层可以使用nn.Conv2d函数定义卷积操作和ReLU激活函数。LSTM层可以使用nn.LSTM函数定义,并指定输入维度、隐藏层维度、层数和输出维度。
接下来,创建一个CNN-LSTM类,并在初始化方法中初始化CNN和LSTM层。可以使用super()函数调用父类的初始化方法,并传入相应的参数。在forward方法中,先将输入数据传递给CNN层,然后对通道维度进行转置,并调整张量的形状。
最后,根据需要导入PyTorch库并准备好数据。定义CNN和LSTM层,并调整参数。然后将这些层组合起来,构建CNN-LSTM模型。
以下是一个示例代码:
```python
import torch
import torch.nn as nn
class CNN(nn.Module):
def __init__(self, input_size, output_size):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(input_size, output_size, kernel_size=3, stride=1, padding=1)
self.relu = nn.ReLU()
def forward(self, x):
x = self.conv1(x)
x = self.relu(x)
return x
class LSTM(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, output_size):
super(LSTM, self).__init__()
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
output, _ = self.lstm(x)
output = self.fc(output[:, -1, :])
return output
class CNN_LSTM(nn.Module):
def __init__(self, input_size, output_size):
super(CNN_LSTM, self).__init__()
self.cnn = CNN(input_size, output_size)
self.lstm = LSTM(output_size, 128, 2, output_size)
def forward(self, x):
x = self.cnn(x)
x = x.permute(0, 2, 1, 3)
x = x.reshape(x.shape<span class="em">1</span><span class="em">2</span><span class="em">3</span><span class="em">4</span>
阅读全文