#include<stdio.h> #include<iostream> #include<string.h> #include<algorithm> #include<queue> #include<stack> #include<math.h> #include<map> typedef long long int ll; using namespace std; #define maxn 0x3f3f3f3f #define INF 0x3f3f3f3f3f3f3f3f const int mm=1e6+100; ll d[mm]; struct f{ ll a,b; }num[mm]; bool cmp(f k,f kk) { if(k.a!=kk.a) return k.a<kk.a;//a升序 else return k.b>kk.b;//b降序 } int main() { ll n,m,i,j,t,a,b,c,p,k,kk,l,r; scanf("%lld%lld",&n,&m); for(i=1;i<=n;i++) scanf("%lld",&d[i]); for(i=1;i<=m;i++) scanf("%lld",&num[i].a); for(i=1;i<=m;i++) scanf("%lld",&num[i].b); sort(num+1,num+1+m,cmp); for(i=1;i<=m;i++) { num[i].b=max(num[i-1].b,num[i].b); } ll sum=0; for(i=1;i<=n;i++) { l=0; r=m; p=0; while(l<=r) { ll mid=(l+r)/2; if(d[i]>num[mid].a) { p=mid; l=mid+1; } else r=mid-1; } sum+=num[p].b; } printf("%lld\n",sum); }解释这段代码
时间: 2023-06-18 18:07:50 浏览: 230
这段代码实现了一个题目的解法。具体题目不清楚,但代码中的变量名和注释可以大致理解其思路。
首先,读入一个数列 `d` 和一些二元组 `(a,b)`,并将这些二元组按照 `a` 为第一关键字升序排序,`b` 为第二关键字降序排序。然后,对于每个 `d[i]`,在排序后的二元组中二分查找第一个 `a` 大于等于 `d[i]` 的二元组,并累加其对应的 `b` 值。
具体来说,变量解释如下:
- `n`:数列 `d` 的长度。
- `m`:二元组的数量。
- `num`:存储二元组的数组。
- `d`:存储数列的数组。
- `cmp`:比较函数,按照上述方式比较两个二元组大小。
- `l`、`r`、`mid`、`p`:二分查找时使用的变量。
- `sum`:累加的结果,即所有 `d[i]` 对应的 `b` 值之和。
具体实现细节见代码注释:
相关问题
#include<cstdio> #include<cstdlib> #include<cstring> #include<cmath> #include<ctime> #include<iostream> #include<algorithm> #include<map> #include<stack> #include<queue> #include<vector> #include<set> #include<string> #define dd double #define ll long long dd PI = acos(-1); using namespace std; const ll MAXN = 1e5 + 5; const ll INF = 1e9 + 5; ll n; struct node { ll x, y; }s[5000]; ll dp[MAXN] = { 0 }; int main() { //ios::sync_with_stdio(false); ll n, m; cin >> n >> m; for (ll i = 1; i <= n; i++) { cin >> s[i].x >> s[i].y; } for (ll i = 1; i <= n; i++) { for (ll j = m; j >= s[i].x; j--) { dp[j] = max(dp[j], dp[j - s[i].x] + s[i].y); } } cout << dp[m] << endl; }
这是一段动态规划求解背包问题的代码,用来求解一个容量为m的背包能够装下的最大价值。具体实现过程为:
1. 定义一个结构体node,用来存储物品的重量和价值。
2. 读入物品数量n和背包容量m,然后读入每个物品的重量和价值。
3. 使用二重循环,遍历每一个物品,然后从大到小枚举背包容量j,更新dp[j]的值,表示容量为j的背包能够装下的最大价值。
4. 最后输出dp[m]的值,即容量为m的背包能够装下的最大价值。
值得注意的是,这段代码中还定义了一些常量和宏定义,如MAXN、INF等,以及一些头文件和命名空间的使用。
#include<math.h> #include<algorithm> #include<time.h> #include<stdlib.h> #include<iostream> #include<string.h> #include<map> #include<list> #include<string> #include<queue> #include<set> #include<vector> #include<stack> #include<limits> #define re register #define iosgo() std::ios::sync_with_stdio(false),cin.tie(0),cout.tie(0); #define run(i,n) for (int i = 1; i <= n; i++) #define cin std::cin #define cout std::cout #define ll long long #define endl "\n" using namespace std; typedef pair<int, int>pll; const int N = 2e6 + 10; pll c[N]; int h[150][150]; int x[N], y[N], dp[N], ss[N]; int gcd(int a, int b) { return b ? gcd(b, a % b) : a; } signed main() { string a; cin >> a; string b; cin >> b; if (a[0] == '0' || b[0] == '0') { cout << "0\n"; return 0; } int lena = a.length(); int lenb = b.length(); for (int i = 0; i < lena; i++) { x[i] = a[i] - '0'; } for (int i = 0; i < lenb; i++) { y[i] = b[i] - '0'; } int len = lena + lenb - 1; int r = 0; while (r < lenb) { for (int i = r, j = 0; i < lena + r; i++, j++) { ss[i] += x[j] * y[r]; } r++; } for (int i = len; i > 0; i--) { if (ss[i] >= 10) { ss[i - 1] += ss[i] / 10; ss[i] %= 10; } } for (int i = 0; i < len; i++) { cout << ss[i]; } }
这段代码是一个实现两个大整数相乘的程序。代码首先读取两个大整数a和b,然后将其转换为整型数组x和y。接下来,代码计算两个整数的乘积,并将结果存储在数组ss中。最后,代码将结果输出。
注意,这段代码没有考虑负数的情况,且对于较大的整数可能会导致溢出。如果需要处理更大的整数,可以考虑使用其他大数库或算法来实现。
阅读全文