a matrix E has independent Rademacher entries,matlab快速实现E与其他矩阵相乘的编程
时间: 2024-01-30 13:01:54 浏览: 90
可以使用Matlab自带的函数randi来生成Rademacher分布,然后与其他矩阵相乘即可。具体实现代码如下:
```matlab
% 生成一个大小为m*n的矩阵E,其元素为独立的Rademacher分布
m = 10; % 设置矩阵E的行数
n = 5; % 设置矩阵E的列数
E = 2*randi([0,1], m, n) - 1;
% 定义另一个矩阵A,大小为n*k
k = 3;
A = randn(n, k);
% 计算E和A的乘积
EA = E * A;
```
在上面的代码中,我们使用了randi函数生成了一个大小为m*n的矩阵E,其中元素为独立的Rademacher分布。然后,我们定义了一个大小为n*k的矩阵A,并计算了E和A的乘积EA。
相关问题
matlab constract an SRFT matrix S=D*F*E,where D is a diagonal projector onto s coordinates,E has independent Rademacher entries and F is a discrete cosine transform (DCT2)
Here is an example code in Matlab for constructing an SRFT matrix S:
```matlab
% Define the size of the matrix
n = 8;
% Construct the diagonal matrix D
s = randn(n, 1); % set the s coordinates randomly
D = spdiags(s, 0, n, n);
% Construct the matrix E with independent Rademacher entries
E = sign(randn(n));
% Construct the matrix F using DCT2
F = dct2(eye(n));
% Construct the SRFT matrix S
S = D * F * E;
```
In this code, we first define the size of the matrix `n`. Then we construct the diagonal matrix `D` using the `spdiags` function, where we set the `s` coordinates randomly. Next, we construct the matrix `E` using the `sign` function to generate independent Rademacher entries. Finally, we construct the matrix `F` using the `dct2` function to perform the discrete cosine transform on the identity matrix. Finally, we compute the SRFT matrix `S` as the product of `D`, `F`, and `E`.
阅读全文