组合优化类粒子群算法代码
时间: 2023-06-30 17:14:04 浏览: 82
以下是一个基于粒子群算法的组合优化问题的 Python 代码示例:
```
import random
class Particle:
def __init__(self, num_variables):
self.position = [random.randint(0, 1) for i in range(num_variables)]
self.velocity = [0 for i in range(num_variables)]
self.fitness = 0
self.best_position = self.position[:]
self.best_fitness = 0
class PSO:
def __init__(self, num_particles, num_iterations, num_variables, fitness_function):
self.num_particles = num_particles
self.num_iterations = num_iterations
self.num_variables = num_variables
self.fitness_function = fitness_function
self.swarm = [Particle(num_variables) for i in range(num_particles)]
self.best_particle = self.swarm[0]
def optimize(self):
for i in range(self.num_iterations):
for particle in self.swarm:
particle.fitness = self.fitness_function(particle.position)
if particle.fitness > particle.best_fitness:
particle.best_fitness = particle.fitness
particle.best_position = particle.position[:]
if particle.fitness > self.best_particle.best_fitness:
self.best_particle = particle
for j in range(self.num_variables):
r1 = random.random()
r2 = random.random()
particle.velocity[j] = 0.5 * particle.velocity[j] + \
1.0 * r1 * (particle.best_position[j] - particle.position[j]) + \
1.0 * r2 * (self.best_particle.position[j] - particle.position[j])
particle.position[j] = 1 if random.random() < self.sigmoid(particle.velocity[j]) else 0
def sigmoid(self, x):
return 1.0 / (1.0 + pow(2.718, -x))
# Example usage
def fitness_function(position):
# Evaluate the fitness of the binary string
# For example, count the number of 1s in the string
return sum(position)
pso = PSO(num_particles=10, num_iterations=100, num_variables=5, fitness_function=fitness_function)
pso.optimize()
print(pso.best_particle.best_position)
```
这个代码示例中,我们定义了一个 `Particle` 类,它代表了一个粒子,包括当前位置、速度、适应度、最佳位置和最佳适应度。我们还定义了一个 `PSO` 类,它代表了整个粒子群算法,包括粒子群、迭代次数、变量数、适应度函数等。`optimize` 方法是整个算法的核心,它包括了粒子的更新、适应度的评估、全局最佳位置的更新等操作。
在这个示例中,我们使用了一个简单的适应度函数,即计算二进制字符串中 1 的个数。你可以将适应度函数替换成你自己的问题的适应度函数。
阅读全文