椭圆型偏微分方程五点差分法python
时间: 2023-12-25 11:30:34 浏览: 94
椭圆型偏微分方程的五点差分法是一种常用的数值解法。下面是一个使用Python实现的例子:
```python
import numpy as np
def solve_elliptic_equation(f, g, h, nx, ny, Lx, Ly):
dx = Lx / (nx - 1)
dy = Ly / (ny - 1)
x = np.linspace(0, Lx, nx)
y = np.linspace(0, Ly, ny)
# 初始化解向量
u = np.zeros((nx, ny))
# 设置边界条件
u[0, :] = g(x[0], y)
u[-1, :] = g(x[-1], y)
u[:, 0] = h(x, y[0])
u[:, -1] = h(x, y[-1])
# 迭代求解
for i in range(1, nx - 1):
for j in range(1, ny - 1):
u[i, j] = (u[i-1, j] + u[i+1, j] + u[i, j-1] + u[i, j+1] - dx**2 * f(x[i], y[j])) / 4
return u
# 定义椭圆型偏微分方程的参数和边界条件
def f(x, y):
return 0
def g(x, y):
return 0
def h(x, y):
return np.sin(np.pi * x) * np.sin(np.pi * y)
# 调用函数求解
nx = 101
ny = 101
Lx = 1
Ly = 1
u = solve_elliptic_equation(f, g, h, nx, ny, Lx, Ly)
# 打印结果
print(u)
```
这段代码使用了NumPy库来进行数组操作和数值计算。首先定义了一个`solve_elliptic_equation`函数,该函数接受椭圆型偏微分方程的参数和边界条件,并返回解向量。然后定义了椭圆型偏微分方程的参数和边界条件函数`f(x, y)`、`g(x, y)`和`h(x, y)`。最后调用`solve_elliptic_equation`函数求解,并打印结果。
阅读全文