pytorch卷积量化
时间: 2023-11-10 16:04:02 浏览: 216
PyTorch提供了一些量化操作,包括卷积量化。卷积量化可以将卷积层的权重和激活值转换为整数,从而减少模型的存储空间和计算量。具体来说,卷积量化包括权重量化和激活值量化两个步骤。在权重量化中,将卷积层的权重转换为整数,然后在卷积计算时使用量化后的权重进行计算。在激活值量化中,将卷积层的激活值转换为整数,然后在ReLU等激活函数之前使用量化后的激活值进行计算。
相关问题
写一个pytorch量化的代码
以下是一个简单的PyTorch量化示例代码,其中使用了PyTorch Quantization API中的一些常见函数和类:
```
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.datasets as datasets
import torchvision.transforms as transforms
import torch.quantization
# 定义一个简单的卷积神经网络
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.relu = nn.ReLU(inplace=True)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.conv1(x)
x = self.relu(x)
x = self.pool(x)
x = self.conv2(x)
x = self.relu(x)
x = self.pool(x)
x = x.view(-1, 16 * 5 * 5)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.relu(x)
x = self.fc3(x)
return x
# 加载CIFAR-10数据集并进行预处理
train_transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
test_transform = transforms.Compose([
transforms.Resize(32),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=train_transform)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True, num_workers=2)
test_dataset = datasets.CIFAR10(root='./data', train=False, download=True, transform=test_transform)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False, num_workers=2)
# 将模型进行量化
model = Net()
model.qconfig = torch.quantization.default_qconfig
torch.quantization.prepare(model, inplace=True)
for i, (x, y) in enumerate(train_loader):
model(x)
torch.quantization.convert(model, inplace=True)
# 定义优化器和损失函数
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4)
# 训练函数
def train(epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if batch_idx % 100 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item()))
# 测试函数
def test():
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
output = model(data)
test_loss += criterion(output, target).item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
accuracy = 100. * correct / len(test_loader.dataset)
print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format(test_loss, correct, len(test_loader.dataset), accuracy))
# 训练和测试模型
for epoch in range(1, 11):
train(epoch)
test()
```
阅读全文