柯西变异matlab代码
时间: 2023-07-02 09:21:50 浏览: 523
柯西分布的 MATLAB 代码已经在前面的回答中给出了,下面是柯西变异的 MATLAB 代码:
```matlab
% 生成随机数
x = cauchyrnd(x0, gamma, [N, 1]);
% 计算均值
mu = median(x);
% 计算四分位距
q1 = prctile(x, 25);
q3 = prctile(x, 75);
iqr = q3 - q1;
% 计算离群值
lower = q1 - 1.5 * iqr;
upper = q3 + 1.5 * iqr;
outliers = x(x < lower | x > upper);
```
其中,`cauchyrnd` 函数是 MATLAB 自带的柯西分布随机数生成函数,可以用来生成符合柯西分布的随机数。`x0` 和 `gamma` 分别表示分布中心和半峰宽,`N` 表示需要生成的随机数个数。
然后,我们可以使用 `median` 函数计算这些随机数的中位数作为其均值。由于柯西分布的尾部非常重,因此中位数更能够代表随机数的集中趋势,而平均数可能会受到尾部的影响而变得不准确。
接下来,我们可以使用 `prctile` 函数计算随机数的四分位距,然后使用1.5倍四分位距的方法计算离群值。由于柯西分布的尾部非常重,因此离群值的数量可能会非常多。
这些代码可以帮助我们更好地理解柯西变异的特性,并在使用柯西分布时采取合适的措施。
相关问题
柯西变异matlab代码实现
以下是一个使用MATLAB实现柯西变异的示例代码:
```matlab
% 设置种群大小和迭代次数
popSize = 50;
maxIter = 100;
% 初始化种群
population = rand(popSize, 2); % 假设变量为2维
% 迭代更新种群
for iter = 1:maxIter
% 计算适应度值
fitness = calculateFitness(population);
% 选择父代个体
parents = selection(population, fitness);
% 变异操作
offspring = mutation(parents);
% 更新种群
population = [population; offspring];
population = population(1:popSize, :);
end
% 打印最终种群
disp('Final population:');
disp(population);
```
请注意,上述代码中的`calculateFitness`、`selection`和`mutation`函数需要根据具体问题的需求进行实现。这些函数的功能如下:
- `calculateFitness`:计算种群中每个个体的适应度值。
- `selection`:根据适应度值选择父代个体。
- `mutation`:对父代个体进行变异操作生成子代个体。
你可以根据具体的问题需求,自定义这些函数来实现柯西变异的功能。
柯西高斯变异matlab代码
柯西高斯变异算法是一种常用的优化算法,其主要思想是通过将个体间的差异向高斯分布的随机扰动转化,从而实现种群的更新和进化。MATLAB是一种常用的科学计算软件,可以方便地实现柯西高斯变异算法。
下面是一个简单的柯西高斯变异MATLAB代码示例:
```matlab
function [x,fval]=cmaes(funfcn,x0,sigma,maxiter,tol)
% 输入:funfcn目标函数句柄,x0初始解,sigma初始标准差,maxiter最大迭代次数,tol停止条件
% 输出:x最优解,fval最优解对应的目标函数值
D=length(x0); % 维数
xmean=x0'; % 初始化均值
ps=0; % 累计路径长度
pc=zeros(D,1); % 累计演化路径
C=eye(D); % 协方差矩阵
iter=1; % 迭代次数
while iter<=maxiter
% 生成样本集
for k=1:lambda
z(:,k)=randn(D,1); % 高斯分布随机数
y(:,k)=xmean+sigma*C*z(:,k); % 样本生成
f(k)=feval(funfcn,y(:,k)); % 计算目标函数值
end
% 更新均值和协方差矩阵
[f,idx]=sort(f); % 排序
xmean=xmean+(y(:,idx(1))-xmean)/mu; % 更新均值
ps=(1-cs)*ps+sqrt(cs*(2-cs)*mueff)*(C*z(:,idx(1:mu))*w); % 更新演化路径长度
hsig=norm(ps)/sqrt(1-(1-cs)^(2*iter/lambda))/chiN<D+1.5; % 判断是否需要调整步长
pc=(1-cc)*pc+hsig*sqrt(cc*(2-cc)*mueff)*(xmean-xold)/sigma; % 更新演化路径
C=(1-c1-cmu)*C+c1*(pc*pc'+(1-hsig)*(cc*(2-cc)*C))+cmu*C*(z(:,idx(1:mu))*w)'*(z(:,idx(1:mu))*w); % 更新协方差矩阵
sigma=sigma*exp((norm(pc)/chiN-damps)/sqrt(D)); % 更新标准差
iter=iter+1; % 迭代次数加1
end
x=xmean; % 最优解为均值向量
fval=feval(funfcn,x); % 计算最优解对应的目标函数值
end
```
相关问题:
1. 什么是柯西高斯变异算法?
2. MATLAB中如何实现柯西高斯变异算法?
3. 柯西高斯变异算法有哪些应用场景?
阅读全文
相关推荐















