代码具体实现定义卷积自编码器模型
时间: 2023-06-19 20:03:56 浏览: 90
好的,以下是一个简单的卷积自编码器模型的定义:
```python
import tensorflow as tf
class ConvAutoencoder(tf.keras.Model):
def __init__(self):
super(ConvAutoencoder, self).__init__()
# 编码器
self.encoder = tf.keras.Sequential([
tf.keras.layers.Input(shape=(28, 28, 1)),
tf.keras.layers.Conv2D(16, (3,3), activation='relu', padding='same', strides=2),
tf.keras.layers.Conv2D(8, (3,3), activation='relu', padding='same', strides=2),
tf.keras.layers.Conv2D(8, (3,3), activation='relu', padding='same', strides=2),
])
# 解码器
self.decoder = tf.keras.Sequential([
tf.keras.layers.Conv2DTranspose(8, kernel_size=3, strides=2, activation='relu', padding='same'),
tf.keras.layers.Conv2DTranspose(8, kernel_size=3, strides=2, activation='relu', padding='same'),
tf.keras.layers.Conv2DTranspose(16, kernel_size=3, strides=2, activation='relu', padding='same'),
tf.keras.layers.Conv2D(1, kernel_size=(3,3), activation='sigmoid', padding='same')
])
def call(self, x):
encoded = self.encoder(x)
decoded = self.decoder(encoded)
return decoded
```
这个模型的输入是28x28x1的图像,经过编码器进行压缩,再通过解码器进行解压缩,输出重建后的图像。其中编码器包含三个卷积层,解码器包含三个反卷积层和一个sigmoid激活函数的卷积层。
阅读全文