卷积自编码器 故障诊断模型 python程序

时间: 2023-12-16 07:03:46 浏览: 73
TAR

基于多传感器融合和卷积神经网络的机械故障智能诊断python实现源码.tar

star5星 · 资源好评率100%
以下是使用Python实现卷积自编码器故障诊断模型的示例代码: 首先,我们需要导入必要的库,包括Keras、NumPy和Matplotlib: ```python import numpy as np import matplotlib.pyplot as plt from keras.layers import Input, Conv2D, MaxPooling2D, UpSampling2D from keras.models import Model ``` 接下来,我们定义模型的结构。这里我们使用了一个两层的卷积自编码器,其中每层都包括一个卷积层和一个池化层: ```python input_img = Input(shape=(28, 28, 1)) # Encoder x = Conv2D(16, (3, 3), activation='relu', padding='same')(input_img) x = MaxPooling2D((2, 2), padding='same')(x) x = Conv2D(8, (3, 3), activation='relu', padding='same')(x) x = MaxPooling2D((2, 2), padding='same')(x) # Decoder x = Conv2D(8, (3, 3), activation='relu', padding='same')(x) x = UpSampling2D((2, 2))(x) x = Conv2D(16, (3, 3), activation='relu', padding='same')(x) x = UpSampling2D((2, 2))(x) decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x) autoencoder = Model(input_img, decoded) autoencoder.compile(optimizer='adam', loss='binary_crossentropy') ``` 在上面的代码中,我们首先定义了模型的输入层。然后我们定义了编码器部分,其中包括两个卷积层和两个池化层。接下来,我们定义了解码器部分,其中包括两个卷积层和两个上采样层。最后,我们定义了输出层,并将整个模型编译为一个自编码器。 接下来,我们加载数据集并进行预处理。这里我们使用MNIST手写数字数据集: ```python from keras.datasets import mnist (x_train, _), (x_test, _) = mnist.load_data() x_train = x_train.astype('float32') / 255. x_test = x_test.astype('float32') / 255. x_train = np.reshape(x_train, (len(x_train), 28, 28, 1)) x_test = np.reshape(x_test, (len(x_test), 28, 28, 1)) ``` 在上面的代码中,我们将数据集中的像素值从0到255缩放到0到1之间,并将数据集的形状从原始形状(数量,28,28)转换为新形状(数量,28,28,1),其中最后一个维度表示通道数。 现在我们训练模型: ```python autoencoder.fit(x_train, x_train, epochs=50, batch_size=128, shuffle=True, validation_data=(x_test, x_test)) ``` 我们使用50个epochs和大小为128的批次进行训练,并使用验证集来监控模型的性能。 最后,我们可视化一些重构图像: ```python decoded_imgs = autoencoder.predict(x_test) n = 10 plt.figure(figsize=(20, 4)) for i in range(n): # Original Images ax = plt.subplot(2, n, i + 1) plt.imshow(x_test[i].reshape(28, 28)) plt.gray() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) # Reconstructed Images ax = plt.subplot(2, n, i + 1 + n) plt.imshow(decoded_imgs[i].reshape(28, 28)) plt.gray() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) plt.show() ``` 在上面的代码中,我们使用predict()方法生成一些重构图像,并将它们与原始图像一起可视化。 完整的Python代码如下: ```python import numpy as np import matplotlib.pyplot as plt from keras.layers import Input, Conv2D, MaxPooling2D, UpSampling2D from keras.models import Model from keras.datasets import mnist input_img = Input(shape=(28, 28, 1)) # Encoder x = Conv2D(16, (3, 3), activation='relu', padding='same')(input_img) x = MaxPooling2D((2, 2), padding='same')(x) x = Conv2D(8, (3, 3), activation='relu', padding='same')(x) x = MaxPooling2D((2, 2), padding='same')(x) # Decoder x = Conv2D(8, (3, 3), activation='relu', padding='same')(x) x = UpSampling2D((2, 2))(x) x = Conv2D(16, (3, 3), activation='relu', padding='same')(x) x = UpSampling2D((2, 2))(x) decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x) autoencoder = Model(input_img, decoded) autoencoder.compile(optimizer='adam', loss='binary_crossentropy') (x_train, _), (x_test, _) = mnist.load_data() x_train = x_train.astype('float32') / 255. x_test = x_test.astype('float32') / 255. x_train = np.reshape(x_train, (len(x_train), 28, 28, 1)) x_test = np.reshape(x_test, (len(x_test), 28, 28, 1)) autoencoder.fit(x_train, x_train, epochs=50, batch_size=128, shuffle=True, validation_data=(x_test, x_test)) decoded_imgs = autoencoder.predict(x_test) n = 10 plt.figure(figsize=(20, 4)) for i in range(n): # Original Images ax = plt.subplot(2, n, i + 1) plt.imshow(x_test[i].reshape(28, 28)) plt.gray() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) # Reconstructed Images ax = plt.subplot(2, n, i + 1 + n) plt.imshow(decoded_imgs[i].reshape(28, 28)) plt.gray() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) plt.show() ```
阅读全文

相关推荐

zip
基于卷积自编码器和图像金字塔的布料缺陷检测python源码.zip 【资源介绍】 该项目是个人毕设项目,答辩评审分达到95分,代码都经过调试测试,确保可以运行!欢迎下载使用,可用于小白学习、进阶。 该资源主要针对计算机、通信、人工智能、自动化等相关专业的学生、老师或从业者下载使用,亦可作为期末课程设计、课程大作业、毕业设计等。 项目整体具有较高的学习借鉴价值!基础能力强的可以在此基础上修改调整,以实现不同的功能。 基于论文《An Unsupervised Learning Based Approach for Automated Defect Inspection on Textured Surfaces》进行复现实验验证,在自建无纺布匹数据集上进行训练和检测。 因为对缺陷进行标记或像素级分割很困难,缺陷的类型也十分复杂,所以基于学习的纹理缺陷检测大体思路是无监督的。即利用无监督学习算法学习正常纹理的数据分布特征,而不学习缺陷的数据分布特征。在待测图上以滑动区域为重构对象,与原图像做残差。由于正常纹理学习充分,重构残差应当很小,而缺陷区域的残差较大,故被凸现出来,随后再利用残差图做进一步处理。 在空域上进行无监督学习主要用卷积自编码器,其有两部分组成,编码器和解码器。编码器由卷积、激活、池化操作做成,对原始数据域分层做特征提取和降维,最后将数据映射到一个欠完备的隐层特征空间上。解码器由上采样、卷积、激活操作完成,将特征空间上的数据映射回空域。 本文主要功能实现:使用训练好的多尺度降噪自编码器对图像patch进行预测,将生成的图像patch与原始输入的patch进行对比,计算其重构残差,由于自编码器训练过程中使用的是无缺陷的图像,因而自编码器会对有缺陷的图像patch更加敏感,致使残差值偏高,将残差值与训练集的统计量进行比对,根据设置的阈值来判断当前像素位置是否为缺陷,从而实现像素级的缺陷检测。 ## 模型及实现介绍 使用无瑕疵的训练集,在不同的图像金字塔尺度上(使用高斯金字塔,金字塔尺寸为512,256,128)训练一个自编码器(包含一个Decoder和Encoder),将原始图像裁剪为8*8的图像patch块,然后对其添加噪声,使用自编码器对这些图像patch进行处理,计算自编码器对每个图像patch的重建输出x’与输入x的残差|x-x’|,然后使用在不同金字塔尺度下设定好的阈值,来对重构残差进行判断,当存在多个尺度下的残差都超过阈值就认为该像素区域为缺陷像素。 1.数据收集和处理部分。** **数据收集:**使用的数据为先前项目中使用的实际无纺布图像数据,原始图像为6800*8000,使用python脚本将其裁剪为多个512*512的图像。该步骤使用的脚本为cropImage.py。 **光照归一化:**由于数据图像本身光照足够,本文没有进行光照归一化,另一个原因是根据论文中给出的韦伯光照归一化公式,使用代码复现后发现效果不佳,无法还原至论文中的效果,代码为WLD.py。 **加入噪声:**使用椒盐噪声进行噪声腐蚀,噪声系数为0.01。相关代码位于utils.py **图像金字塔和Patch提取:**使用opencv构建图像金字塔,然后将每个层级的图像裁剪为8*8的图像patch,然后保存为训练数据集。相关代码位于preprocess.py 测试和结果** 测试图像不需要进行噪声腐蚀,直接输入原始图像进行残差计算。每个像素都对应一个patch图作为残差信息来源,通过该值与阈值进行比对,来确定该像素是否符合正常分布,如果超过阈值则认为该像素邻域为缺陷分布,除此之外,还需要根据不同尺度下的残差阈值,综合判断该像素邻域是否为缺陷特征,实验中认为超过当达到两个尺度下都超过阈值,就认为该像素邻域为缺陷。 原论文并没有介绍如何将三个尺度的残差进行融合,因此本文采取的方案是使用多个尺度下训练的模型进行推理,并根据相应的结果使用RGB三个颜色通道来表示当前像素邻域的缺陷情况。 相关代码为test.py。 实验中的瑕疵能够被正确的检测出来,平均来看,使用多尺度进行检测能够加准确地实现像素级检测,并且使用无监督方法不需要人工进行繁重的缺陷标注工作,与有监督学习的方式比较,该方法更便捷和可行。

最新推荐

recommend-type

keras自动编码器实现系列之卷积自动编码器操作

卷积自动编码器(Convolutional Autoencoder, CAE)是一种使用卷积神经网络(Convolutional Neural Network, CNN)架构的自动编码器,它在处理图像数据时表现出色,尤其在图像压缩、去噪、特征提取等领域。...
recommend-type

matlab实现卷积编码与viterbi译码

卷积编码与Viterbi译码是数字通信领域中用于提高数据传输可靠性的关键技术。MATLAB作为一款强大的数值计算和仿真工具,常被用来模拟这些编码解码过程。以下是对给定文件中涉及的知识点的详细说明: 1. **卷积编码**...
recommend-type

Python通过TensorFlow卷积神经网络实现猫狗识别

在本文中,我们将探讨如何使用Python和TensorFlow构建一个卷积神经网络(CNN)来实现猫狗图像的识别。这是一个常见的计算机视觉任务,通常用于初学者熟悉深度学习和CNNs。我们将按照以下步骤进行: 1. **数据处理**...
recommend-type

酒店预订管理系统 SSM毕业设计 附带论文.zip

酒店预订管理系统 SSM毕业设计 附带论文 启动教程:https://www.bilibili.com/video/BV1GK1iYyE2B
recommend-type

探索数据转换实验平台在设备装置中的应用

资源摘要信息:"一种数据转换实验平台" 数据转换实验平台是一种专门用于实验和研究数据转换技术的设备装置,它能够帮助研究者或技术人员在模拟或实际的工作环境中测试和优化数据转换过程。数据转换是指将数据从一种格式、类型或系统转换为另一种,这个过程在信息科技领域中极其重要,尤其是在涉及不同系统集成、数据迁移、数据备份与恢复、以及数据分析等场景中。 在深入探讨一种数据转换实验平台之前,有必要先了解数据转换的基本概念。数据转换通常包括以下几个方面: 1. 数据格式转换:将数据从一种格式转换为另一种,比如将文档从PDF格式转换为Word格式,或者将音频文件从MP3格式转换为WAV格式。 2. 数据类型转换:涉及数据类型的改变,例如将字符串转换为整数,或者将日期时间格式从一种标准转换为另一种。 3. 系统间数据转换:在不同的计算机系统或软件平台之间进行数据交换时,往往需要将数据从一个系统的数据结构转换为另一个系统的数据结构。 4. 数据编码转换:涉及到数据的字符编码或编码格式的变化,例如从UTF-8编码转换为GBK编码。 针对这些不同的转换需求,一种数据转换实验平台应具备以下特点和功能: 1. 支持多种数据格式:实验平台应支持广泛的数据格式,包括但不限于文本、图像、音频、视频、数据库文件等。 2. 可配置的转换规则:用户可以根据需要定义和修改数据转换的规则,包括正则表达式、映射表、函数脚本等。 3. 高度兼容性:平台需要兼容不同的操作系统和硬件平台,确保数据转换的可行性。 4. 实时监控与日志记录:实验平台应提供实时数据转换监控界面,并记录转换过程中的关键信息,便于调试和分析。 5. 测试与验证机制:提供数据校验工具,确保转换后的数据完整性和准确性。 6. 用户友好界面:为了方便非专业人员使用,平台应提供简洁直观的操作界面,降低使用门槛。 7. 强大的扩展性:平台设计时应考虑到未来可能的技术更新或格式标准变更,需要具备良好的可扩展性。 具体到所给文件中的"一种数据转换实验平台.pdf",它应该是一份详细描述该实验平台的设计理念、架构、实现方法、功能特性以及使用案例等内容的文档。文档中可能会包含以下几个方面的详细信息: - 实验平台的设计背景与目的:解释为什么需要这样一个数据转换实验平台,以及它预期解决的问题。 - 系统架构和技术选型:介绍实验平台的系统架构设计,包括软件架构、硬件配置以及所用技术栈。 - 核心功能与工作流程:详细说明平台的核心功能模块,以及数据转换的工作流程。 - 使用案例与操作手册:提供实际使用场景下的案例分析,以及用户如何操作该平台的步骤说明。 - 测试结果与效能分析:展示平台在实际运行中的测试结果,包括性能测试、稳定性测试等,并进行效能分析。 - 问题解决方案与未来展望:讨论在开发和使用过程中遇到的问题及其解决方案,以及对未来技术发展趋势的展望。 通过这份文档,开发者、测试工程师以及研究人员可以获得对数据转换实验平台的深入理解和实用指导,这对于产品的设计、开发和应用都具有重要价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

ggflags包的国际化问题:多语言标签处理与显示的权威指南

![ggflags包的国际化问题:多语言标签处理与显示的权威指南](https://www.verbolabs.com/wp-content/uploads/2022/11/Benefits-of-Software-Localization-1024x576.png) # 1. ggflags包介绍及国际化问题概述 在当今多元化的互联网世界中,提供一个多语言的应用界面已经成为了国际化软件开发的基础。ggflags包作为Go语言中处理多语言标签的热门工具,不仅简化了国际化流程,还提高了软件的可扩展性和维护性。本章将介绍ggflags包的基础知识,并概述国际化问题的背景与重要性。 ## 1.1
recommend-type

如何使用MATLAB实现电力系统潮流计算中的节点导纳矩阵构建和阻抗矩阵转换,并解释这两种矩阵在潮流计算中的作用和差异?

在电力系统的潮流计算中,MATLAB提供了一个强大的平台来构建节点导纳矩阵和进行阻抗矩阵转换,这对于确保计算的准确性和效率至关重要。首先,节点导纳矩阵是电力系统潮流计算的基础,它表示系统中所有节点之间的电气关系。在MATLAB中,可以通过定义各支路的导纳值并将它们组合成矩阵来构建节点导纳矩阵。具体操作包括建立各节点的自导纳和互导纳,以及考虑变压器分接头和线路的参数等因素。 参考资源链接:[电力系统潮流计算:MATLAB程序设计解析](https://wenku.csdn.net/doc/89x0jbvyav?spm=1055.2569.3001.10343) 接下来,阻抗矩阵转换是
recommend-type

使用git-log-to-tikz.py将Git日志转换为TIKZ图形

资源摘要信息:"git-log-to-tikz.py 是一个使用 Python 编写的脚本工具,它能够从 Git 版本控制系统中的存储库生成用于 TeX 文档的 TIkZ 图。TIkZ 是一个用于在 LaTeX 文档中创建图形的包,它是 pgf(portable graphics format)库的前端,广泛用于创建高质量的矢量图形,尤其适合绘制流程图、树状图、网络图等。 此脚本基于 Michael Hauspie 的原始作品进行了更新和重写。它利用了 Jinja2 模板引擎来处理模板逻辑,这使得脚本更加灵活,易于对输出的 TeX 代码进行个性化定制。通过使用 Jinja2,脚本可以接受参数,并根据参数输出不同的图形样式。 在使用该脚本时,用户可以通过命令行参数指定要分析的 Git 分支。脚本会从当前 Git 存储库中提取所指定分支的提交历史,并将其转换为一个TIkZ图形。默认情况下,脚本会将每个提交作为 TIkZ 的一个节点绘制,同时显示提交间的父子关系,形成一个树状结构。 描述中提到的命令行示例: ```bash git-log-to-tikz.py master feature-branch > repository-snapshot.tex ``` 这个命令会将 master 分支和 feature-branch 分支的提交日志状态输出到名为 'repository-snapshot.tex' 的文件中。输出的 TeX 代码使用TIkZ包定义了一个 tikzpicture 环境,该环境可以被 LaTeX 编译器处理,并在最终生成的文档中渲染出相应的图形。在这个例子中,master 分支被用作主分支,所有回溯到版本库根的提交都会包含在生成的图形中,而并行分支上的提交则会根据它们的时间顺序交错显示。 脚本还提供了一个可选参数 `--maketest`,通过该参数可以执行额外的测试流程,但具体的使用方法和效果在描述中没有详细说明。一般情况下,使用这个参数是为了验证脚本的功能或对脚本进行测试。 此外,Makefile 中提供了调用此脚本的示例,说明了如何在自动化构建过程中集成该脚本,以便于快速生成所需的 TeX 图形文件。 此脚本的更新版本允许用户通过少量参数对生成的图形进行控制,包括但不限于图形的大小、颜色、标签等。这为用户提供了更高的自定义空间,以适应不同的文档需求和审美标准。 在使用 git-log-to-tikz.py 脚本时,用户需要具备一定的 Python 编程知识,以理解和操作 Jinja2 模板,并且需要熟悉 Git 和 TIkZ 的基本使用方法。对于那些不熟悉命令行操作的用户,可能需要一些基础的学习来熟练掌握该脚本的使用。 最后,虽然文件名称列表中只列出了 'git-log-to-tikz.py-master' 这一个文件,但根据描述,该脚本应能支持检查任意数量的分支,并且在输出的 TeX 文件中使用 `tikzset` 宏来轻松地重新设置图形的样式。这表明脚本具有较好的扩展性和灵活性。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依