卷积自编码器 故障诊断模型 python程序
时间: 2023-12-16 22:03:46 浏览: 80
以下是使用Python实现卷积自编码器故障诊断模型的示例代码:
首先,我们需要导入必要的库,包括Keras、NumPy和Matplotlib:
```python
import numpy as np
import matplotlib.pyplot as plt
from keras.layers import Input, Conv2D, MaxPooling2D, UpSampling2D
from keras.models import Model
```
接下来,我们定义模型的结构。这里我们使用了一个两层的卷积自编码器,其中每层都包括一个卷积层和一个池化层:
```python
input_img = Input(shape=(28, 28, 1))
# Encoder
x = Conv2D(16, (3, 3), activation='relu', padding='same')(input_img)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
# Decoder
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
x = UpSampling2D((2, 2))(x)
x = Conv2D(16, (3, 3), activation='relu', padding='same')(x)
x = UpSampling2D((2, 2))(x)
decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x)
autoencoder = Model(input_img, decoded)
autoencoder.compile(optimizer='adam', loss='binary_crossentropy')
```
在上面的代码中,我们首先定义了模型的输入层。然后我们定义了编码器部分,其中包括两个卷积层和两个池化层。接下来,我们定义了解码器部分,其中包括两个卷积层和两个上采样层。最后,我们定义了输出层,并将整个模型编译为一个自编码器。
接下来,我们加载数据集并进行预处理。这里我们使用MNIST手写数字数据集:
```python
from keras.datasets import mnist
(x_train, _), (x_test, _) = mnist.load_data()
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
x_train = np.reshape(x_train, (len(x_train), 28, 28, 1))
x_test = np.reshape(x_test, (len(x_test), 28, 28, 1))
```
在上面的代码中,我们将数据集中的像素值从0到255缩放到0到1之间,并将数据集的形状从原始形状(数量,28,28)转换为新形状(数量,28,28,1),其中最后一个维度表示通道数。
现在我们训练模型:
```python
autoencoder.fit(x_train, x_train,
epochs=50,
batch_size=128,
shuffle=True,
validation_data=(x_test, x_test))
```
我们使用50个epochs和大小为128的批次进行训练,并使用验证集来监控模型的性能。
最后,我们可视化一些重构图像:
```python
decoded_imgs = autoencoder.predict(x_test)
n = 10
plt.figure(figsize=(20, 4))
for i in range(n):
# Original Images
ax = plt.subplot(2, n, i + 1)
plt.imshow(x_test[i].reshape(28, 28))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
# Reconstructed Images
ax = plt.subplot(2, n, i + 1 + n)
plt.imshow(decoded_imgs[i].reshape(28, 28))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
plt.show()
```
在上面的代码中,我们使用predict()方法生成一些重构图像,并将它们与原始图像一起可视化。
完整的Python代码如下:
```python
import numpy as np
import matplotlib.pyplot as plt
from keras.layers import Input, Conv2D, MaxPooling2D, UpSampling2D
from keras.models import Model
from keras.datasets import mnist
input_img = Input(shape=(28, 28, 1))
# Encoder
x = Conv2D(16, (3, 3), activation='relu', padding='same')(input_img)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
# Decoder
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
x = UpSampling2D((2, 2))(x)
x = Conv2D(16, (3, 3), activation='relu', padding='same')(x)
x = UpSampling2D((2, 2))(x)
decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x)
autoencoder = Model(input_img, decoded)
autoencoder.compile(optimizer='adam', loss='binary_crossentropy')
(x_train, _), (x_test, _) = mnist.load_data()
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
x_train = np.reshape(x_train, (len(x_train), 28, 28, 1))
x_test = np.reshape(x_test, (len(x_test), 28, 28, 1))
autoencoder.fit(x_train, x_train,
epochs=50,
batch_size=128,
shuffle=True,
validation_data=(x_test, x_test))
decoded_imgs = autoencoder.predict(x_test)
n = 10
plt.figure(figsize=(20, 4))
for i in range(n):
# Original Images
ax = plt.subplot(2, n, i + 1)
plt.imshow(x_test[i].reshape(28, 28))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
# Reconstructed Images
ax = plt.subplot(2, n, i + 1 + n)
plt.imshow(decoded_imgs[i].reshape(28, 28))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
plt.show()
```
阅读全文