你能用tensorflow写一段transformer的代码吗
时间: 2024-06-10 17:10:19 浏览: 269
作为AI语言模型,我可以为您提供一段Transformer的TensorFlow代码,如下所示:
```python
import tensorflow as tf
from tensorflow.keras.layers import Input, Dense, Dropout, LayerNormalization, MultiHeadAttention, Add
def transformer_block(inputs, num_heads, dff, d_model, dropout_rate):
# Multi-Head Attention
attention = MultiHeadAttention(num_heads=num_heads, key_dim=d_model)(inputs, inputs)
attention = Dropout(dropout_rate)(attention)
attention = LayerNormalization(epsilon=1e-6)(Add()([inputs, attention]))
# Feed Forward Network
ffn = Dense(dff, activation='relu')(attention)
ffn = Dropout(dropout_rate)(ffn)
ffn = Dense(d_model)(ffn)
ffn = Dropout(dropout_rate)(ffn)
ffn = LayerNormalization(epsilon=1e-6)(Add()([attention, ffn]))
return ffn
def transformer(input_vocab_size, target_vocab_size, num_heads, dff, d_model, num_layers, dropout_rate):
# Input Layers
inputs = Input(shape=(None,))
targets = Input(shape=(None,))
# Embedding Layers
input_embedding = tf.keras.layers.Embedding(input_vocab_size, d_model)(inputs)
target_embedding = tf.keras.layers.Embedding(target_vocab_size, d_model)(targets)
# Positional Encoding
input_pe = tf.keras.layers.Embedding(input_vocab_size, d_model)(tf.range(start=0, limit=input_vocab_size, delta=1))
input_pe = tf.keras.layers.Dropout(dropout_rate)(input_pe)
input_embedding += input_pe
target_pe = tf.keras.layers.Embedding(target_vocab_size, d_model)(tf.range(start=0, limit=target_vocab_size, delta=1))
target_pe = tf.keras.layers.Dropout(dropout_rate)(target_pe)
target_embedding += target_pe
# Encoder Layers
encoder = tf.keras.layers.Dropout(dropout_rate)(input_embedding)
for i in range(num_layers):
encoder = transformer_block(encoder, num_heads, dff, d_model, dropout_rate)
# Decoder Layers
decoder = tf.keras.layers.Dropout(dropout_rate)(target_embedding)
for i in range(num_layers):
decoder = transformer_block(decoder, num_heads, dff, d_model, dropout_rate)
# Output Layer
output = tf.keras.layers.Dense(target_vocab_size, activation='softmax')(decoder)
# Model
model = tf.keras.models.Model(inputs=[inputs, targets], outputs=output)
return model
```
这段代码定义了一个Transformer模型,包括输入层、嵌入层、位置编码、多层Transformer块、输出层等。可以通过调整参数来修改模型的配置,以满足您的需求。
阅读全文