差分隐私Fedavg代码学习
时间: 2023-11-13 13:53:23 浏览: 108
好的,您可以参考以下代码实现差分隐私的FedAvg算法:
```
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
from torchvision import datasets, transforms
# 设置超参数
batch_size = 64
lr = 0.01
momentum = 0.5
eps = 0.5 # 噪声扰动参数
delta = 1e-5 # 总体隐私预算
# 定义数据转换
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
# 加载MNIST数据集
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('data', train=True, download=True, transform=transform),
batch_size=batch_size, shuffle=True)
# 定义神经网络模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(784, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = x.view(-1, 784)
x = nn.functional.relu(self.fc1(x))
x = self.fc2(x)
return x
# 定义服务器端的模型和优化器
global_model = Net()
global_optimizer = optim.SGD(global_model.parameters(), lr=lr, momentum=momentum)
# 定义客户端的模型和优化器
def client_update(local_model, data, target):
local_optimizer = optim.SGD(local_model.parameters(), lr=lr, momentum=momentum)
local_optimizer.zero_grad()
output = local_model(data)
loss = nn.functional.cross_entropy(output, target)
loss.backward()
local_optimizer.step()
return local_model.state_dict(), len(data)
# 为FedAvg添加噪声
def add_noise(v):
noise = np.random.laplace(0, v/eps, 1)
return v + noise
# 在客户端上运行FedAvg算法
def client_fedavg(local_model, data_loader, round, delta):
local_weight, local_n = client_update(local_model, data_loader.dataset.data, data_loader.dataset.targets)
weight_norms = []
for w in local_weight.values():
weight_norms.append(np.linalg.norm(w.numpy()))
norm_clip = min(1, max(0, max(weight_norms)))
for key in local_weight.keys():
local_weight[key] = add_noise(local_weight[key] / norm_clip) # 添加噪声并进行归一化
return local_weight, local_n
# 运行FedAvg算法
def fedavg(rounds):
for r in range(rounds):
global_weight = {}
global_n = 0
for idx, (data, target) in enumerate(train_loader):
local_weight, local_n = client_fedavg(global_model, data_loader[idx], r, delta / len(train_loader))
for key in local_weight.keys():
if key not in global_weight:
global_weight[key] = local_weight[key] * local_n
else:
global_weight[key] += local_weight[key] * local_n
global_n += local_n
for key in global_weight.keys():
global_weight[key] /= global_n
global_model.load_state_dict(global_weight)
print('Round: {} Loss: {:.6f}'.format(r+1, nn.functional.cross_entropy(global_model(data_loader.dataset.data), data_loader.dataset.targets)))
if __name__ == '__main__':
fedavg(10)
```
以上是一个简单的差分隐私FedAvg算法的实现,主要思路是在每个客户端的本地模型中添加噪声,然后进行加权平均得到全局模型。具体实现中需要注意的地方在代码注释中都有说明。
阅读全文
相关推荐


















