请给出完整的各个函数的C语言代码
时间: 2024-10-16 09:12:10 浏览: 28
C语言:分段函数代码实现
为了实现完整的功能,我们需要几个关键的函数,包括输入多项式、输出多项式、加法、减法、乘法和导数的计算。以下是这些函数的基本C语言实现,注意这些代码只是一个简化版本,实际应用中可能需要考虑更多边界条件和错误处理:
```c
// 添加项到多项式链表
void add_term(Polynomial* poly, double coefficient, int exponent) {
Term* new_term = (Term*)malloc(sizeof(Term));
new_term->coefficient = coefficient;
new_term->exponent = exponent;
if (!poly->terms) {
poly->terms = new_term;
} else {
Term* curr = poly->terms;
while (curr->next && curr->exponent < exponent) {
curr = curr->next;
}
if (curr->next) {
curr->next->previous = new_term;
}
new_term->next = curr->next;
curr->next = new_term;
if (new_term->next) {
new_term->next->previous = new_term;
}
}
poly->size++;
}
// 输入多项式到链表
void input_polynomial_from_file(Polynomial* poly, const char* filename) {
// 打开文件
FILE* file = fopen(filename, "r");
if (!file) {
perror("Error opening file");
return;
}
// 逐行读取数据并添加到多项式
char line[100];
while (fgets(line, sizeof(line), file)) {
char* end;
double coefficient = strtod(line, &end);
int exponent = atoi(end);
add_term(poly, coefficient, exponent);
}
fclose(file);
}
// 输出多项式到文件
void output_polynomial_to_file(const Polynomial* poly, const char* filename) {
FILE* file = fopen(filename, "w");
if (!file) {
perror("Error opening file");
return;
}
for (Term* term = poly->terms; term != NULL; term = term->next) {
fprintf(file, "%.2f*x^%d\n", term->coefficient, term->exponent);
}
fclose(file);
}
// 加法和减法操作
Polynomial* add_or_subtract(Polynomial* poly1, Polynomial* poly2, char op) {
Polynomial* result = create_polynomial();
if (op == '+') {
for (Term* term1 = poly1->terms; term1 != NULL; term1 = term1->next) {
Term* found = find_term_in_poly(result, term1->exponent);
if (found) {
found->coefficient += term1->coefficient;
} else {
add_term(result, term1->coefficient, term1->exponent);
}
}
} else if (op == '-') {
for (Term* term1 = poly1->terms; term1 != NULL; term1 = term1->next) {
Term* found = find_term_in_poly(result, term1->exponent);
if (found) {
found->coefficient -= term1->coefficient;
} else {
add_term(result, -term1->coefficient, term1->exponent);
}
}
} else {
printf("Invalid operator.\n");
return NULL;
}
return result;
}
// 查找并替换现有项
Term* find_term_in_poly(Polynomial* poly, int exponent) {
Term* curr = poly->terms;
while (curr && curr->exponent != exponent) {
curr = curr->next;
}
return curr;
}
// 乘法操作
Polynomial* multiply_polynomials(Polynomial* poly1, Polynomial* poly2) {
Polynomial* result = create_polynomial();
for (Term* term1 = poly1->terms; term1 != NULL; term1 = term1->next) {
for (Term* term2 = poly2->terms; term2 != NULL; term2 = term2->next) {
int combined_exponent = term1->exponent + term2->exponent;
double product = term1->coefficient * term2->coefficient;
add_term(result, product, combined_exponent);
}
}
return result;
}
// 导数计算,这里简化为每一项乘以指数减一
Polynomial* calculate_derivative(const Polynomial* poly, int order) {
Polynomial* derivative = create_polynomial();
for (Term* term = poly->terms; term != NULL; term = term->next) {
double derivative_value = term->coefficient * order;
if (derivative_value != 0) {
add_term(derivative, derivative_value, term->exponent - 1);
}
}
return derivative;
}
```
这只是一个基础示例,实际操作中可能需要考虑更复杂的细节,例如处理分母为零的除法情况、优化乘法操作等。
阅读全文