设计一个计算器,通过键盘输入 0~9 的数 字,以及运算法则加减乘除,能通过串口 在电脑端串口调试软件上显示运算结果STM32mini版的工程代码(要求分别写出主函数文件和头文件和.c文件)

时间: 2023-11-28 07:51:11 浏览: 31
头文件 calculator.h: ```c #ifndef __CALCULATOR_H #define __CALCULATOR_H #include "stm32f1xx_hal.h" // 定义计算器状态 typedef enum { CALCULATOR_STATE_INIT, // 初始化状态 CALCULATOR_STATE_NUM1, // 输入第一个数字状态 CALCULATOR_STATE_OP, // 输入操作符状态 CALCULATOR_STATE_NUM2, // 输入第二个数字状态 CALCULATOR_STATE_RESULT // 显示结果状态 } CalculatorState; // 定义计算器结构体 typedef struct { CalculatorState state; // 当前状态 uint8_t num1; // 第一个数字 uint8_t op; // 操作符:+、-、*、/ uint8_t num2; // 第二个数字 uint8_t result; // 运算结果 } Calculator; // 初始化计算器 void Calculator_Init(Calculator *calculator); // 输入数字 void Calculator_InputNumber(Calculator *calculator, uint8_t number); // 输入操作符 void Calculator_InputOperator(Calculator *calculator, uint8_t op); // 计算结果 void Calculator_Calculate(Calculator *calculator); #endif /* __CALCULATOR_H */ ``` .c文件 calculator.c: ```c #include "calculator.h" void Calculator_Init(Calculator *calculator) { calculator->state = CALCULATOR_STATE_INIT; } void Calculator_InputNumber(Calculator *calculator, uint8_t number) { switch (calculator->state) { case CALCULATOR_STATE_INIT: calculator->num1 = number; calculator->state = CALCULATOR_STATE_NUM1; break; case CALCULATOR_STATE_NUM1: calculator->num1 = calculator->num1 * 10 + number; break; case CALCULATOR_STATE_OP: calculator->num2 = number; calculator->state = CALCULATOR_STATE_NUM2; break; case CALCULATOR_STATE_NUM2: calculator->num2 = calculator->num2 * 10 + number; break; default: break; } } void Calculator_InputOperator(Calculator *calculator, uint8_t op) { if (calculator->state == CALCULATOR_STATE_NUM1) { calculator->op = op; calculator->state = CALCULATOR_STATE_OP; } } void Calculator_Calculate(Calculator *calculator) { switch (calculator->op) { case '+': calculator->result = calculator->num1 + calculator->num2; break; case '-': calculator->result = calculator->num1 - calculator->num2; break; case '*': calculator->result = calculator->num1 * calculator->num2; break; case '/': if (calculator->num2 != 0) { calculator->result = calculator->num1 / calculator->num2; } break; default: break; } calculator->state = CALCULATOR_STATE_RESULT; } ``` 主函数文件 main.c: ```c #include "main.h" #include "calculator.h" UART_HandleTypeDef huart2; void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_USART2_UART_Init(void); int main(void) { HAL_Init(); SystemClock_Config(); MX_GPIO_Init(); MX_USART2_UART_Init(); Calculator calculator; Calculator_Init(&calculator); uint8_t buffer[32]; uint8_t index = 0; while (1) { uint8_t ch; HAL_StatusTypeDef status = HAL_UART_Receive(&huart2, &ch, 1, 100); if (status == HAL_OK) { if (ch >= '0' && ch <= '9') { Calculator_InputNumber(&calculator, ch - '0'); } else if (ch == '+' || ch == '-' || ch == '*' || ch == '/') { Calculator_InputOperator(&calculator, ch); } else if (ch == '=') { Calculator_Calculate(&calculator); sprintf((char *)buffer, "Result: %d\r\n", calculator.result); HAL_UART_Transmit(&huart2, buffer, strlen((char *)buffer), 100); Calculator_Init(&calculator); } else { Calculator_Init(&calculator); } } } } void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { Error_Handler(); } } static void MX_USART2_UART_Init(void) { huart2.Instance = USART2; huart2.Init.BaudRate = 115200; huart2.Init.WordLength = UART_WORDLENGTH_8B; huart2.Init.StopBits = UART_STOPBITS_1; huart2.Init.Parity = UART_PARITY_NONE; huart2.Init.Mode = UART_MODE_TX_RX; huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE; if (HAL_UART_Init(&huart2) != HAL_OK) { Error_Handler(); } } static void MX_GPIO_Init(void) { __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOD_CLK_ENABLE(); } void Error_Handler(void) { while(1) {} } #ifdef USE_FULL_ASSERT void assert_failed(uint8_t *file, uint32_t line) {} #endif ```

相关推荐

最新推荐

recommend-type

超级简易的JS计算器实例讲解(实现加减乘除)

在本文中,我们将深入探讨如何使用JavaScript实现一个简单的计算器,具备加、减、乘、除的基本功能。这个计算器实例简洁明了,非常适合初学者学习和理解JavaScript基础以及DOM操作。 首先,HTML部分创建了一个基本...
recommend-type

java加减乘除计算器界面编程

编写一个应用程序,设计一个标题为“计算”的窗口,设计四个按钮,分别命名为“加”、“减”、“积”、“除”,设计三个文本框,单击相应的按钮,将两个文本框的数字做运算,在第三个文本框中显示结果。要求能够处理...
recommend-type

Python学习笔记16 - 猜数字小游戏

猜数字小游戏的相关函数,与主程序搭配使用
recommend-type

机器人比赛内容的讲解,帮助简单了解一下机器人比赛的注意事项

适用于未参加过机器人比赛的小伙伴,简单了解一下注意事项。
recommend-type

shumaguan.rar

shumaguan.rar
recommend-type

BSC绩效考核指标汇总 (2).docx

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】Flask中的会话与用户管理

![python网络编程合集](https://media.geeksforgeeks.org/wp-content/uploads/20201021201514/pythonrequests.PNG) # 2.1 用户注册和登录 ### 2.1.1 用户注册表单的设计和验证 用户注册表单是用户创建帐户的第一步,因此至关重要。它应该简单易用,同时收集必要的用户信息。 * **字段设计:**表单应包含必要的字段,如用户名、电子邮件和密码。 * **验证:**表单应验证字段的格式和有效性,例如电子邮件地址的格式和密码的强度。 * **错误处理:**表单应优雅地处理验证错误,并提供清晰的错误消
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

BSC资料.pdf

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。