pytorch读取图像文件并转化给神经网络模型训练的代码
时间: 2023-06-06 07:06:40 浏览: 102
pytorch 实现将自己的图片数据处理成可以训练的图片类型
以下是一个基于PyTorch的读取图像文件并转换为神经网络模型训练的代码示例:
```python
import torch
from torch.utils.data import DataLoader, Dataset
from torchvision import datasets, transforms
# 数据预处理
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# 定义数据集,将图像和标签一一对应
class MyDataset(Dataset):
def __init__(self, file_path):
self.data = datasets.ImageFolder(root=file_path, transform=transform)
def __getitem__(self, index):
x, y = self.data[index]
return x, y
def __len__(self):
return len(self.data)
# 加载数据集并分批次训练
train_data = MyDataset('train')
train_loader = DataLoader(dataset=train_data, batch_size=32, shuffle=True)
# 定义神经网络模型和优化器
model = MyModel()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# 开始训练
for epoch in range(10):
for i, (images, labels) in enumerate(train_loader):
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# 每迭代100个批次输出一次训练结果
if (i + 1) % 100 == 0:
print('Epoch [{}/{}], Iteration [{}/{}], Loss: {:.4f}'
.format(epoch + 1, 10, i + 1, len(train_data) // 32, loss.item()))
```
阅读全文