for i, (imgs, _) in enumerate(train_loader):解释
时间: 2024-01-26 15:03:28 浏览: 253
这是一个 Python 中用于训练机器学习模型的代码段。其中,train_loader 是一个数据加载器,它会将训练数据集批量地加载到内存中以进行训练。在 for 循环中,imgs 表示每个批次中的图像数据,而 "_" 则是一个占位符,它表示我们不需要使用到对应的标签信息,这个代码段的作用是枚举每个批次中的数据,并使用其进行训练。
相关问题
yolov7train.py详解
yolov7train.py 是使用 YOLOv7 算法进行目标检测的训练脚本。下面对 yolov7train.py 的主要代码进行简单的解释:
1. 导入相关库
```python
import argparse
import yaml
import time
import torch
from torch.utils.data import DataLoader
from torchvision import datasets
from models.yolov7 import Model
from utils.datasets import ImageFolder
from utils.general import (
check_img_size, non_max_suppression, apply_classifier, scale_coords,
xyxy2xywh, plot_one_box, strip_optimizer, set_logging)
from utils.torch_utils import (
select_device, time_synchronized, load_classifier, model_info)
```
这里导入了 argparse 用于解析命令行参数,yaml 用于解析配置文件,time 用于记录时间,torch 用于神经网络训练,DataLoader 用于读取数据集,datasets 和 ImageFolder 用于加载数据集,Model 用于定义 YOLOv7 模型,各种工具函数用于辅助训练。
2. 定义命令行参数
```python
parser = argparse.ArgumentParser()
parser.add_argument('--data', type=str, default='data.yaml', help='dataset.yaml path')
parser.add_argument('--hyp', type=str, default='hyp.yaml', help='hyperparameters path')
parser.add_argument('--epochs', type=int, default=300)
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs')
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes')
parser.add_argument('--rect', action='store_true', help='rectangular training')
parser.add_argument('--resume', nargs='?', const='yolov7.pt', default=False, help='resume most recent training')
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
parser.add_argument('--notest', action='store_true', help='only test final epoch')
parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
opt = parser.parse_args()
```
这里定义了许多命令行参数,包括数据集路径、超参数路径、训练轮数、批量大小、图片大小、是否使用矩形训练、是否从最近的检查点恢复训练、是否只保存最终的检查点、是否只测试最终的模型、是否进行超参数进化、gsutil 存储桶等。
3. 加载数据集
```python
with open(opt.data) as f:
data_dict = yaml.load(f, Loader=yaml.FullLoader)
train_path = data_dict['train']
test_path = data_dict['test']
num_classes = data_dict['nc']
names = data_dict['names']
train_dataset = ImageFolder(train_path, img_size=opt.img_size[0], rect=opt.rect)
test_dataset = ImageFolder(test_path, img_size=opt.img_size[1], rect=True)
batch_size = opt.batch_size
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=8, pin_memory=True, collate_fn=train_dataset.collate_fn)
test_dataloader = DataLoader(test_dataset, batch_size=batch_size * 2, num_workers=8, pin_memory=True, collate_fn=test_dataset.collate_fn)
```
这里读取了数据集的配置文件,包括训练集、测试集、类别数和类别名称等信息。然后使用 ImageFolder 加载数据集,设置图片大小和是否使用矩形训练。最后使用 DataLoader 加载数据集,并设置批量大小、是否 shuffle、是否使用 pin_memory 等参数。
4. 定义 YOLOv7 模型
```python
model = Model(opt.hyp, num_classes, opt.img_size)
model.nc = num_classes
device = select_device(opt.device, batch_size=batch_size)
model.to(device).train()
criterion = model.loss
optimizer = torch.optim.SGD(model.parameters(), lr=hyp['lr0'], momentum=hyp['momentum'], weight_decay=hyp['weight_decay'])
scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=1, T_mult=2)
start_epoch = 0
best_fitness = 0.0
```
这里使用 Model 类定义了 YOLOv7 模型,并将其放到指定设备上进行训练。使用交叉熵损失函数作为模型的损失函数,使用 SGD 优化器进行训练,并使用余弦退火学习率调整策略。定义了起始轮数、最佳精度等变量。
5. 开始训练
```python
for epoch in range(start_epoch, opt.epochs):
model.train()
mloss = torch.zeros(4).to(device) # mean losses
for i, (imgs, targets, paths, _) in enumerate(train_dataloader):
ni = i + len(train_dataloader) * epoch # number integrated batches (since train start)
imgs = imgs.to(device)
targets = targets.to(device)
loss, _, _ = model(imgs, targets)
loss.backward()
optimizer.step()
optimizer.zero_grad()
mloss = (mloss * i + loss.detach().cpu()) / (i + 1) # update mean losses
# Print batch results
if ni % 20 == 0:
print(f'Epoch {epoch}/{opt.epochs - 1}, Batch {i}/{len(train_dataloader) - 1}, lr={optimizer.param_groups[0]["lr"]:.6f}, loss={mloss[0]:.4f}')
# Update scheduler
scheduler.step()
# Update Best fitness
with torch.no_grad():
fitness = model_fitness(model)
if fitness > best_fitness:
best_fitness = fitness
# Save checkpoint
if (not opt.nosave) or (epoch == opt.epochs - 1):
ckpt = {
'epoch': epoch,
'best_fitness': best_fitness,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict()
}
torch.save(ckpt, f'checkpoints/yolov7_epoch{epoch}.pt')
# Test
if not opt.notest:
t = time_synchronized()
model.eval()
for j, (imgs, targets, paths, shapes) in enumerate(test_dataloader):
if j == 0:
pred = model(imgs.to(device))
pred = non_max_suppression(pred, conf_thres=0.001, iou_thres=0.6)
else:
break
t1 = time_synchronized()
if isinstance(pred, int) or isinstance(pred, tuple):
print(f'Epoch {epoch}/{opt.epochs - 1}, test_loss={mloss[0]:.4f}, test_mAP={0.0}')
else:
pred = pred[0].cpu()
iou_thres = 0.5
niou = [iou_thres] * num_classes
ap, p, r = ap_per_class(pred, targets, shapes, iou_thres=niou)
mp, mr, map50, f1, _, _ = stats(ap, p, r, gt=targets)
print(f'Epoch {epoch}/{opt.epochs - 1}, test_loss={mloss[0]:.4f}, test_mAP={map50:.2f} ({mr*100:.1f}/{mp*100:.1f})')
# Plot images
if epoch == 0 and j == 0:
for i, det in enumerate(pred): # detections per image
img = cv2.imread(paths[i]) # BGR
img = plot_results(img, det, class_names=names)
cv2.imwrite(f'runs/test{i}.jpg', img)
if i == 3:
break
```
这里进行了多个 epoch 的训练。在每个 epoch 中,对于每个批量的数据,先将数据移动到指定设备上,然后计算模型的损失函数,并进行反向传播和梯度下降。在每个 epoch 结束时,更新学习率调整策略和最佳精度,保存当前的检查点。如果 opt.notest 为 False,则进行测试,并输出测试结果。最后,如果是第一个 epoch,则绘制部分图像用于可视化。
基于paddle自定义卷积神经网络进行垃圾分类,本竞赛所用训练和测试图片均来自生活场景。总共四十个类别,类别和标签对应关系在训练集中的dict文件里。图片中垃圾的类别,格式是“一级类别/二级类别”,二级类别是具体的垃圾物体类别,也就是训练数据中标注的类别,比如一次性快餐盒、果皮果肉、旧衣服等。一级类别有四种类别:可回收物、厨余垃圾、有害垃圾和其他垃圾。 数据文件包括训练集(有标注)和测试集(无标注),训练集的所有图片分别保存在train文件夹下面的0-39个文件夹中,文件名即类别标签,测试集共有400张待分类的垃圾图片在test文件夹下,testpath.txt保存了所有测试集文件的名称,格式为:name+\n。提交结果的格式如下: 每一行为:图像名 标签 test1.jpg 29写出相关代码
由于数据集比较大,建议在使用时将数据集下载到本地进行操作。下面是基于PaddlePaddle框架的卷积神经网络代码:
```python
import os
import random
import numpy as np
import paddle
import paddle.nn as nn
import paddle.optimizer as opt
from paddle.io import Dataset
from PIL import Image
# 定义数据集
class TrashDataset(Dataset):
def __init__(self, mode):
self.imgs = []
self.labels = []
self.mode = mode
self.class_dict = {}
# 获取类别和标签对应关系
with open('train/class_dict.csv', 'r', encoding='utf-8') as f:
for line in f.readlines():
class_name, class_id = line.strip().split(',')
self.class_dict[class_name] = int(class_id)
if self.mode == 'train':
# 读取训练集图片
for i in range(40):
class_name = str(i)
class_path = 'train/' + class_name
for img_name in os.listdir(class_path):
img_path = class_path + '/' + img_name
self.imgs.append(img_path)
self.labels.append(self.class_dict[class_name])
else:
# 读取测试集图片
with open('test/testpath.txt', 'r', encoding='utf-8') as f:
for line in f.readlines():
img_name = line.strip()
self.imgs.append('test/' + img_name)
def __getitem__(self, idx):
img_path = self.imgs[idx]
label = self.labels[idx]
# 读取图片并进行预处理
img = Image.open(img_path).convert('RGB')
img = img.resize((224, 224), Image.ANTIALIAS)
img = np.array(img).astype('float32')
img = img.transpose((2, 0, 1))
img = img / 255.0
if self.mode == 'train':
img = img + np.random.normal(loc=0.0, scale=0.01, size=img.shape)
return img, label
def __len__(self):
return len(self.imgs)
# 定义卷积神经网络模型
class CNN(nn.Layer):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Conv2D(in_channels=3, out_channels=64, kernel_size=3, stride=1, padding=1)
self.bn1 = nn.BatchNorm2D(num_features=64)
self.relu1 = nn.ReLU()
self.pool1 = nn.Pool2D(pool_size=2, pool_stride=2, pool_type='max')
self.conv2 = nn.Conv2D(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1)
self.bn2 = nn.BatchNorm2D(num_features=128)
self.relu2 = nn.ReLU()
self.pool2 = nn.Pool2D(pool_size=2, pool_stride=2, pool_type='max')
self.conv3 = nn.Conv2D(in_channels=128, out_channels=256, kernel_size=3, stride=1, padding=1)
self.bn3 = nn.BatchNorm2D(num_features=256)
self.relu3 = nn.ReLU()
self.pool3 = nn.Pool2D(pool_size=2, pool_stride=2, pool_type='max')
self.fc1 = nn.Linear(in_features=256*28*28, out_features=1024)
self.relu4 = nn.ReLU()
self.fc2 = nn.Linear(in_features=1024, out_features=40)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu1(x)
x = self.pool1(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu2(x)
x = self.pool2(x)
x = self.conv3(x)
x = self.bn3(x)
x = self.relu3(x)
x = self.pool3(x)
x = paddle.flatten(x, start_axis=1, stop_axis=-1)
x = self.fc1(x)
x = self.relu4(x)
x = self.fc2(x)
return x
# 训练函数
def train(model, train_loader, epoch, optimizer):
model.train()
for batch_id, data in enumerate(train_loader()):
x_data = data[0]
y_data = data[1]
predicts = model(x_data)
loss = nn.functional.cross_entropy(predicts, y_data)
acc = paddle.metric.accuracy(predicts, y_data)
loss.backward()
optimizer.step()
optimizer.clear_grad()
if batch_id % 10 == 0:
print('Epoch [{}/{}], Batch [{}/{}], Loss: {:.4f}, Acc: {:.4f}'.format(
epoch+1, num_epochs, batch_id+1, len(train_loader), loss.numpy(), acc.numpy()))
# 预测函数
def predict(model, test_loader):
model.eval()
predicts = []
for batch_id, data in enumerate(test_loader()):
x_data = data[0]
y_data = data[1]
output = model(x_data)
output = nn.functional.softmax(output, axis=1)
output = np.argmax(output.numpy(), axis=1).tolist()
predicts.extend(output)
return predicts
# 训练函数
def train_model():
# 定义超参数
batch_size = 32
num_epochs = 10
learning_rate = 0.001
# 加载数据集
train_dataset = TrashDataset(mode='train')
train_loader = paddle.io.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_dataset = TrashDataset(mode='test')
test_loader = paddle.io.DataLoader(test_dataset, batch_size=batch_size)
# 初始化模型和优化器
model = CNN()
optimizer = opt.Adam(learning_rate=learning_rate, parameters=model.parameters())
# 开始训练
for epoch in range(num_epochs):
train(model, train_loader, epoch, optimizer)
# 预测测试集并保存结果
predicts = predict(model, test_loader)
with open('result.txt', 'w', encoding='utf-8') as f:
for i, p in enumerate(predicts):
f.write('test_{}.jpg {}\n'.format(i+1, p))
# 主函数
if __name__ == '__main__':
train_model()
```
上面的代码定义了一个CNN模型,使用Adam优化器进行训练,并在测试集上进行预测并将结果保存到文件中。在训练过程中,通过打印损失和精度可以观察模型的训练情况。
阅读全文