https://aistudio.baidu.com/aistudio/datasetdetail/177317以此网址数据集为基础,用pytorch编写一份中文字体识别代码
时间: 2023-12-20 12:03:24 浏览: 77
好的,以下是使用 PyTorch 实现中文字体识别的代码,主要分为数据处理、模型定义和训练三个部分。代码中使用了 Convolutional Neural Networks (CNN) 模型进行中文字体识别。
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
import torchvision.transforms as transforms
from PIL import Image
import os
# 数据处理
class ChineseFontDataset(Dataset):
def __init__(self, data_dir, transform=None):
self.imgs = os.listdir(data_dir)
self.data_dir = data_dir
self.transform = transform
def __getitem__(self, index):
img_path = os.path.join(self.data_dir, self.imgs[index])
img = Image.open(img_path).convert('RGB')
if self.transform is not None:
img = self.transform(img)
target = int(self.imgs[index].split('_')[0])
return img, target
def __len__(self):
return len(self.imgs)
# 模型定义
class ChineseFontCNN(nn.Module):
def __init__(self):
super(ChineseFontCNN, self).__init__()
self.conv1 = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3)
self.conv2 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3)
self.conv3 = nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3)
self.fc1 = nn.Linear(in_features=256*10*10, out_features=512)
self.fc2 = nn.Linear(in_features=512, out_features=100)
self.dropout = nn.Dropout(p=0.5)
self.relu = nn.ReLU()
def forward(self, x):
x = self.conv1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.relu(x)
x = self.conv3(x)
x = self.relu(x)
x = x.view(-1, 256*10*10)
x = self.fc1(x)
x = self.relu(x)
x = self.dropout(x)
x = self.fc2(x)
return x
# 训练
def train(model, device, train_loader, optimizer, criterion, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if batch_idx % 100 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
if __name__ == '__main__':
data_dir = './ChineseFonts'
transform = transforms.Compose([
transforms.Resize(size=(100, 100)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
dataset = ChineseFontDataset(data_dir=data_dir, transform=transform)
train_loader = DataLoader(dataset=dataset, batch_size=64, shuffle=True)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = ChineseFontCNN().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
for epoch in range(1, 11):
train(model, device, train_loader, optimizer, criterion, epoch)
```
这份代码中,我们首先定义了一个数据处理类 `ChineseFontDataset`,用于读取数据集中的图片和标签,并进行数据增强和归一化操作。接着定义了一个卷积神经网络模型 `ChineseFontCNN`,该模型包含了三个卷积层和两个全连接层,最后输出分类结果。最后在 `train` 函数中进行模型的训练。
需要注意的是,由于中文字体识别数据集比较大,因此在训练过程中可能需要较长时间,可以根据自己的硬件配置和时间安排适当调整训练轮数和批次大小。
阅读全文