代码讲解 def matches(g_matches): g_matches.insert(2, 'potential1', g_matches['country1'].map(squad_stats.set_index('nationality_name')['potential'])) g_matches.insert(3, 'potential2', g_matches['country2'].map(squad_stats.set_index('nationality_name')['potential'])) g_matches.insert(4, 'rank1', g_matches['country1'].map(last_team_scores.set_index('team')['rank'])) g_matches.insert(5, 'rank2', g_matches['country2'].map(last_team_scores.set_index('team')['rank'])) pred_set = [] for index, row in g_matches.iterrows(): if row['potential1'] > row['potential2'] and abs(row['potential1'] - row['potential2']) > 2: pred_set.append({'Team1': row['country1'], 'Team2': row['country2']}) elif row['potential2'] > row['potential1'] and abs(row['potential2'] - row['potential1']) > 2: pred_set.append({'Team1': row['country2'], 'Team2': row['country1']}) else: if row['rank1'] > row['rank2']: pred_set.append({'Team1': row['country1'], 'Team2': row['country2']}) else: pred_set.append({'Team1': row['country2'], 'Team2': row['country1']}) pred_set = pd.DataFrame(pred_set) pred_set.insert(2, 'Team1_FIFA_RANK', pred_set['Team1'].map(last_team_scores.set_index('team')['rank'])) pred_set.insert(3, 'Team2_FIFA_RANK', pred_set['Team2'].map(last_team_scores.set_index('team')['rank'])) pred_set.insert(4, 'Team1_Goalkeeper_Score', pred_set['Team1'].map(last_team_scores.set_index('team')['goalkeeper_score'])) pred_set.insert(5, 'Team2_Goalkeeper_Score', pred_set['Team2'].map(last_team_scores.set_index('team')['goalkeeper_score'])) pred_set.insert(6, 'Team1_Defense', pred_set['Team1'].map(last_team_scores.set_index('team')['defense_score'])) pred_set.insert(7, 'Team1_Offense', pred_set['Team1'].map(last_team_scores.set_index('team')['offense_score'])) pred_set.insert(8, 'Team1_Midfield', pred_set['Team1'].map(last_team_scores.set_index('team')['midfield_score'])) pred_set.insert(9, 'Team2_Defense', pred_set['Team2'].map(last_team_scores.set_index('team')['defense_score'])) pred_set.insert(10, 'Team2_Offense', pred_set['Team2'].map(last_team_scores.set_index('team')['offense_score'])) pred_set.insert(11, 'Team2_Midfield', pred_set['Team2'].map(last_team_scores.set_index('team')['midfield_score'])) return pred_set

时间: 2023-07-14 15:14:09 浏览: 116
这是一个函数,它的输入是一个包含两个国家名称的 DataFrame,名为 `g_matches`。函数首先用 `map()` 函数将 `squad_stats` 中的 `potential` 列添加到 `g_matches` 中,作为两支球队的潜力值,分别在第 2 和第 3 列。然后,函数使用 `map()` 函数将 `last_team_scores` 中的 `rank` 列添加到 `g_matches` 中,作为两支球队的排名,分别在第 4 和第 5 列。接下来,函数创建一个空列表 `pred_set`,并遍历 `g_matches` 中的每一行,根据条件将预测结果添加到 `pred_set` 列表中。如果第一支球队的潜力值高于第二支球队并且两者之间的差异大于 2,则将第一支球队预测为获胜方;否则,如果第二支球队的潜力值高于第一支球队并且两者之间的差异大于 2,则将第二支球队预测为获胜方。如果两支球队的潜力值差异不足 2,则将预测结果基于排名进行决定。接下来,函数将 `pred_set` 列表转换为 DataFrame,并使用 `map()` 函数将 `last_team_scores` 中的其他列添加到 DataFrame 中,包括两支球队的 FIFA 排名、门将得分、防守得分、进攻得分和中场得分。最后,函数返回包含预测结果和球队评分的 DataFrame。
阅读全文

相关推荐

最新推荐

recommend-type

解决keras,val_categorical_accuracy:,0.0000e+00问题

return (1 + TPR - FPR) / 2 ``` 通过自定义评估函数,我们可以更好地理解模型在不同任务上的性能,并根据实际情况调整模型以优化其表现。 总之,遇到`val_categorical_accuracy: 0.0000e+00`的问题时,首先要...
recommend-type

解决Tensorflow2.0 tf.keras.Model.load_weights() 报错处理问题

**问题2:ValueError: Unknown metric function:**** 当模型定义中包含自定义的度量函数,如`top_2_accuracy`,在加载模型时需要提供这些自定义函数。可以通过`custom_objects`参数来传递: ```python from keras....
recommend-type

Python中if __name__ == '__main__'作用解析

在Python编程语言中,`if __name__ == '__main__'` 是一个常见的代码结构,它的作用在于控制代码的执行时机。理解这个语句的作用对于编写可复用、模块化的Python程序至关重要。以下是对这个语句的详细解释。 首先,...
recommend-type

tensorflow 2.0模式下训练的模型转成 tf1.x 版本的pb模型实例

在TensorFlow 2.0中,模型训练变得更加方便和高效,但有时为了兼容旧系统或者利用TensorFlow 1.x的一些特性,我们需要将2.0版本训练的模型转换为1.x版本的.pb模型。这里我们将详细讲解如何实现这个过程,特别关注在...
recommend-type

如何基于python对接钉钉并获取access_token

def get_token(): res = requests.get(api_url) if res.status_code == 200: str_res = res.text token = json.loads(str_res).get('access_token') return token ``` `get_token()`函数会返回HTTP响应的状态...
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"