llseek函数的参数

时间: 2023-10-11 12:06:11 浏览: 42
`llseek`函数是Linux系统中的一个系统调用,用于设置文件读写指针的位置。它的参数如下: - `fd`:文件描述符,表示要设置读写指针的文件。 - `offset`:指定要设置的读写指针的偏移量,可以是正数、负数或0。 - `whence`:指定偏移量的起始位置,取值为`SEEK_SET`、`SEEK_CUR`或`SEEK_END`,分别表示从文件的开头、当前位置或文件结尾开始计算偏移量。 - `result`:指向一个`loff_t`类型的变量,用于保存最终的读写指针位置。 其中,`loff_t`是一个64位整型数据类型,用于表示文件读写指针的位置。
相关问题

loff_t (*llseek) (struct file *, loff_t, int);

这是 Linux 内核中文件操作的结构体 `file_operations` 中的一个函数指针,用于将文件指针定位到指定的偏移量 `offset` 处。该函数的原型为: ```c loff_t llseek(struct file *file, loff_t offset, int whence); ``` 其中,`file` 是要进行定位操作的文件,`offset` 是要定位到的偏移量,`whence` 表示从哪里开始计算偏移量。`whence` 可以取以下值之一: - `SEEK_SET`:从文件开头开始计算偏移量。 - `SEEK_CUR`:从当前位置开始计算偏移量。 - `SEEK_END`:从文件结尾开始计算偏移量。 该函数返回定位后的文件指针位置,如果出错则返回一个负数。`loff_t` 是一个 64 位整数类型,用于表示文件大小或文件偏移量。

在内核空间申请一块4KB的内存用于模拟一个设备,并在驱动中提供针对这块内存的读、写、控制和定位函数,以供用户空间的进程能通过Linux系统调用获取或者设置这块内存的内容。 (1) 分析虚拟设备驱动程序中需要实现哪些功能; (2) 确定经典操作集中的功能函数; (3) 将操作集中的函数补全。

(1)虚拟设备驱动程序中需要实现以下功能: - 在内核空间申请一块4KB的内存,用于模拟设备。 - 提供针对这块内存的读、写、控制和定位函数,以供用户空间的进程能通过Linux系统调用获取或者设置这块内存的内容。 - 注册设备文件并提供设备文件的操作接口。 (2)经典操作集中的功能函数: - `probe`函数:设备被插入时执行的函数,用于初始化设备驱动程序并申请内存。 - `release`函数:设备被拔出时执行的函数,用于释放内存并清理设备驱动程序。 - `open`函数:打开设备文件时执行的函数,用于初始化设备驱动程序并建立设备文件的操作接口。 - `close`函数:关闭设备文件时执行的函数,用于清理设备驱动程序并关闭设备文件的操作接口。 - `read`函数:读取设备文件时执行的函数,用于读取内存中的数据并返回给用户空间。 - `write`函数:写入设备文件时执行的函数,用于将用户空间传来的数据写入内存。 - `ioctl`函数:控制设备文件时执行的函数,用于实现设备的控制功能。 - `llseek`函数:定位设备文件时执行的函数,用于实现设备的定位功能。 (3)操作集中的函数实现: ```c #include <linux/module.h> #include <linux/fs.h> #include <linux/cdev.h> #include <linux/uaccess.h> #define DEV_NAME "my_device" // 设备名称 #define DEV_SIZE 4096 // 设备大小 static dev_t devno; // 设备号 static struct cdev cdev; // 字符设备结构体 static char mem[DEV_SIZE]; // 设备内存 static int my_open(struct inode *inode, struct file *file) { printk(KERN_INFO "my_device: open\n"); return 0; } static int my_release(struct inode *inode, struct file *file) { printk(KERN_INFO "my_device: release\n"); return 0; } static ssize_t my_read(struct file *file, char __user *buf, size_t count, loff_t *pos) { printk(KERN_INFO "my_device: read\n"); if (*pos >= DEV_SIZE) { return 0; } if (*pos + count > DEV_SIZE) { count = DEV_SIZE - *pos; } if (copy_to_user(buf, mem + *pos, count)) { return -EFAULT; } *pos += count; return count; } static ssize_t my_write(struct file *file, const char __user *buf, size_t count, loff_t *pos) { printk(KERN_INFO "my_device: write\n"); if (*pos >= DEV_SIZE) { return 0; } if (*pos + count > DEV_SIZE) { count = DEV_SIZE - *pos; } if (copy_from_user(mem + *pos, buf, count)) { return -EFAULT; } *pos += count; return count; } static long my_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { printk(KERN_INFO "my_device: ioctl\n"); switch (cmd) { // 实现设备的控制功能 default: return -EINVAL; } } static loff_t my_llseek(struct file *file, loff_t offset, int whence) { printk(KERN_INFO "my_device: llseek\n"); loff_t newpos; switch (whence) { case 0: // SEEK_SET newpos = offset; break; case 1: // SEEK_CUR newpos = file->f_pos + offset; break; case 2: // SEEK_END newpos = DEV_SIZE + offset; break; default: return -EINVAL; } if (newpos < 0 || newpos > DEV_SIZE) { return -EINVAL; } file->f_pos = newpos; return newpos; } static struct file_operations fops = { .owner = THIS_MODULE, .open = my_open, .release = my_release, .read = my_read, .write = my_write, .unlocked_ioctl = my_ioctl, .llseek = my_llseek, }; static int __init my_device_init(void) { // 申请设备号 alloc_chrdev_region(&devno, 0, 1, DEV_NAME); // 注册字符设备 cdev_init(&cdev, &fops); cdev_add(&cdev, devno, 1); // 输出调试信息 printk(KERN_INFO "my_device: init\n"); printk(KERN_INFO "my_device: major=%d, minor=%d\n", MAJOR(devno), MINOR(devno)); return 0; } static void __exit my_device_exit(void) { // 注销字符设备 cdev_del(&cdev); // 释放设备号 unregister_chrdev_region(devno, 1); // 输出调试信息 printk(KERN_INFO "my_device: exit\n"); } module_init(my_device_init); module_exit(my_device_exit); MODULE_LICENSE("GPL"); ``` 以上代码中,`my_open`、`my_release`、`my_read`、`my_write`、`my_ioctl`和`my_llseek`函数分别对应设备文件的打开、关闭、读取、写入、控制和定位操作。在`my_device_init`函数中,我们申请了设备号并注册了字符设备,同时初始化了设备内存。在`my_device_exit`函数中,我们注销了字符设备并释放了设备号。

相关推荐

#include /* __init and __exit macroses */ #include /* KERN_INFO macros */ #include /* required for all kernel modules */ #include /* module_param() and MODULE_PARM_DESC() */ #include /* struct file_operations, struct file */ #include /* struct miscdevice and misc_[de]register() */ #include /* kzalloc() function */ #include /* copy_{to,from}_user() */ #include //init_task再次定义 #include "proc_relate.h" MODULE_LICENSE("GPL"); MODULE_AUTHOR("Wu Yimin>"); MODULE_DESCRIPTION("proc_relate kernel modoule"); static int proc_relate_open(struct inode *inode, struct file *file) { struct proc_info *buf; int err = 0; buf=kmalloc(sizeof(struct proc_info)*30,GFP_KERNEL); file->private_data = buf; return err; } static ssize_t proc_relate_read(struct file *file, char __user * out,size_t size, loff_t * off) { struct proc_info *buf = file->private_data; /* 你需要补充的代码 */ } static int proc_relate_close(struct inode *inode, struct file *file) { struct buffer *buf = file->private_data; kfree(buf); return 0; } static struct file_operations proc_relate_fops = { .owner = THIS_MODULE, .open = proc_relate_open, .read = proc_relate_read, .release = proc_relate_close, .llseek = noop_llseek }; static struct miscdevice proc_relate_misc_device = { .minor = MISC_DYNAMIC_MINOR, .name = "proc_relate", .fops = &proc_relate_fops }; static int __init proc_relate_init(void) { misc_register(&proc_relate_misc_device); printk(KERN_INFO "proc_relate device has been registered.\n"); return 0; } static void __exit proc_relate_exit(void) { misc_deregister(&proc_relate_misc_device); printk(KERN_INFO "proc_relate device has been unregistered\n"); } module_init(proc_relate_init); module_exit(proc_relate_exit);补充这段代码需要补充的函数部分,使其能编译为内核模块,安装该内核模块后测试程序,运行结果类似如下:Here is parent process,pid = 7329 this is a child,pid is 7330 this is another child,pid is 7331 this is a child,pid is 7333 In thread,pid=7331 tid=7334 thread id=1254224352 this is a child,pid is 7332 this is a child,pid is 7335 ------------------------------------------------------- pid=2616 tgid=2616 comm=sshd sessionid=4 mm=ffff8000fae19000 activeMM=ffff8000fae19000 parent =1971 real_parent=1971 group_leader2616 ------------------------------------------------------- pid=2670 tgid=2670 comm=sshd sessionid=4 mm=ffff8000fa477500 activeMM=ffff8000fa477500 parent =2616 real_parent=2616 group_leader2670 -------------------------------------------------------

#include #include #include #include #include #define DEVICE_NAME "mydevice" #define BUF_SIZE 4096 static char *dev_buf; static int major; static int open(struct inode *inode, struct file *file) { printk(KERN_INFO "mydevice: device opened.\n"); return 0; } static int release(struct inode *inode, struct file *file) { printk(KERN_INFO "mydevice: device closed.\n"); return 0; } static ssize_t read(struct file *file, char __user *buf, size_t count, loff_t *pos) { int bytes_read = 0; if (*pos >= BUF_SIZE) { return 0; } if (count + *pos > BUF_SIZE) { count = BUF_SIZE - *pos; } if (copy_to_user(buf, dev_buf + *pos, count)) { return -EFAULT; } *pos += count; bytes_read = count; printk(KERN_INFO "mydevice: %d bytes read.\n", bytes_read); return bytes_read; } static ssize_t write(struct file *file, const char __user *buf, size_t count, loff_t *pos) { int bytes_written = 0; if (*pos >= BUF_SIZE) { return -ENOSPC; } if (count + *pos > BUF_SIZE) { count = BUF_SIZE - *pos; } if (copy_from_user(dev_buf + *pos, buf, count)) { return -EFAULT; } *pos += count; bytes_written = count; printk(KERN_INFO "mydevice: %d bytes written.\n", bytes_written); return bytes_written; } static long ioctl(struct file *file, unsigned int cmd, unsigned long arg) { switch (cmd) { case 0: // 控制命令0 // 执行相应的控制操作 break; case 1: // 控制命令1 // 执行相应的控制操作 break; default: return -ENOTTY; } return 0; } static loff_t lseek(struct file *file, loff_t offset, int whence) { loff_t newpos = 0; switch (whence) { case 0: // SEEK_SET newpos = offset; break; case 1: // SEEK_CUR newpos = file->f_pos + offset; break; case 2: // SEEK_END newpos = BUF_SIZE + offset; break; default: return -EINVAL; } if (newpos < 0 || newpos > BUF_SIZE) { return -EINVAL; } file->f_pos = newpos; return newpos; } static struct file_operations mydevice_fops = { .owner = THIS_MODULE, .open = open, .release = release, .read = read, .write = write, .unlocked_ioctl = ioctl, .llseek = lseek, }; static int __init mydevice_init(void) { dev_buf = kmalloc(BUF_SIZE, GFP_KERNEL); if (!dev_buf) { printk(KERN_ALERT "mydevice: kmalloc failed.\n"); return -ENOMEM; } memset(dev_buf, 0, BUF_SIZE); major = register_chrdev(0, DEVICE_NAME, &mydevice_fops); if (major < 0) { printk(KERN_ALERT "mydevice: register_chrdev failed.\n"); return major; } printk(KERN_INFO "mydevice: Device registered, major = %d.\n", major); return 0; } static void __exit mydevice_exit(void) { unregister_chrdev(major, DEVICE_NAME); kfree(dev_buf); printk(KERN_INFO "mydevice: Device unregistered.\n"); } module_init(mydevice_init); module_exit(mydevice_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Your Name"); MODULE_DESCRIPTION("My Device Driver");解释这串代码

最新推荐

recommend-type

服务器虚拟化部署方案.doc

服务器、电脑、
recommend-type

北京市东城区人民法院服务器项目.doc

服务器、电脑、
recommend-type

VMP技术解析:Handle块优化与壳模板初始化

"这篇学习笔记主要探讨了VMP(Virtual Machine Protect,虚拟机保护)技术在Handle块优化和壳模板初始化方面的应用。作者参考了看雪论坛上的多个资源,包括关于VMP还原、汇编指令的OpCode快速入门以及X86指令编码内幕的相关文章,深入理解VMP的工作原理和技巧。" 在VMP技术中,Handle块是虚拟机执行的关键部分,它包含了用于执行被保护程序的指令序列。在本篇笔记中,作者详细介绍了Handle块的优化过程,包括如何删除不使用的代码段以及如何通过指令变形和等价替换来提高壳模板的安全性。例如,常见的指令优化可能将`jmp`指令替换为`push+retn`或者`lea+jmp`,或者将`lodsbyteptrds:[esi]`优化为`moval,[esi]+addesi,1`等,这些变换旨在混淆原始代码,增加反逆向工程的难度。 在壳模板初始化阶段,作者提到了1.10和1.21两个版本的区别,其中1.21版本增加了`Encodingofap-code`保护,增强了加密效果。在未加密时,代码可能呈现出特定的模式,而加密后,这些模式会被混淆,使分析更加困难。 笔记中还提到,VMP会使用一个名为`ESIResults`的数组来标记Handle块中的指令是否被使用,值为0表示未使用,1表示使用。这为删除不必要的代码提供了依据。此外,通过循环遍历特定的Handle块,并依据某种规律(如`v227&0xFFFFFF00==0xFACE0000`)进行匹配,可以找到需要处理的指令,如`push0xFACE0002`和`movedi,0xFACE0003`,然后将其替换为安全的重定位值或虚拟机上下文。 在结构体使用方面,笔记指出壳模板和用户代码都会通过`Vmp_AllDisassembly`函数进行解析,而且0x8和0x10字段通常都指向相同的结构体。作者还提到了根据`pNtHeader_OptionalHeader.Magic`筛选`ESI_Matching_Array`数组的步骤,这可能是为了进一步确定虚拟机上下文的设置。 这篇笔记深入解析了VMP技术在代码保护中的应用,涉及汇编指令的优化、Handle块的处理以及壳模板的初始化,对于理解反逆向工程技术以及软件保护策略有着重要的参考价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】音频处理基础:使用Librosa

![【进阶】音频处理基础:使用Librosa](https://picx.zhimg.com/80/v2-a39e5c9bff1d920097341591ca8a2dfe_1440w.webp?source=1def8aca) # 2.1 Librosa库的安装和导入 Librosa库是一个用于音频处理的Python库。要安装Librosa库,请在命令行中输入以下命令: ``` pip install librosa ``` 安装完成后,可以通过以下方式导入Librosa库: ```python import librosa ``` 导入Librosa库后,就可以使用其提供的各种函数
recommend-type

python中字典转换成json

在Python中,你可以使用`json`模块将字典转换为JSON格式的字符串。下面是一个简单的示例: ```python import json # 假设我们有一个字典 dict_data = { "name": "John", "age": 30, "city": "New York" } # 使用json.dumps()函数将字典转换为JSON json_string = json.dumps(dict_data) print(json_string) # 输出:{"name": "John", "age": 30, "city": "New York"}
recommend-type

C++ Primer 第四版更新:现代编程风格与标准库

"Cpp Primer第四版中文版(电子版)1" 本书《Cpp Primer》第四版是一本深入浅出介绍C++编程语言的教程,旨在帮助初学者和有经验的程序员掌握现代C++编程技巧。作者在这一版中进行了重大更新,以适应C++语言的发展趋势,特别是强调使用标准库来提高编程效率。书中不再过于关注底层编程技术,而是将重点放在了标准库的运用上。 第四版的主要改动包括: 1. 内容重组:为了反映现代C++编程的最佳实践,书中对语言主题的顺序进行了调整,使得学习路径更加顺畅。 2. 添加辅助学习工具:每章增设了“小结”和“术语”部分,帮助读者回顾和巩固关键概念。此外,重要术语以黑体突出,已熟悉的术语以楷体呈现,以便读者识别。 3. 特殊标注:用特定版式标注关键信息,提醒读者注意语言特性,避免常见错误,强调良好编程习惯,同时提供通用的使用技巧。 4. 前后交叉引用:增加引用以帮助读者理解概念之间的联系。 5. 额外讨论和解释:针对复杂概念和初学者常遇到的问题,进行深入解析。 6. 大量示例:提供丰富的代码示例,所有源代码都可以在线获取,便于读者实践和学习。 本书保留了前几版的核心特色,即以实例教学,通过解释和展示语言特性来帮助读者掌握C++。作者的目标是创作一本清晰、全面、准确的教程,让读者在编写程序的过程中学习C++,同时也展示了如何有效地利用这门语言。 《Cpp Primer》第四版不仅适合C++初学者,也适合想要更新C++知识的老手,它全面覆盖了C++语言的各个方面,包括基础语法、类、模板、STL(Standard Template Library)等,同时引入了现代C++的特性,如智能指针、RAII(Resource Acquisition Is Initialization)、lambda表达式等,使读者能够跟上C++语言的发展步伐,提升编程技能。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【基础】网络编程入门:使用HTTP协议

![【基础】网络编程入门:使用HTTP协议](https://img-blog.csdnimg.cn/direct/4fbc6b5a6d744a519429654f56ea988e.png) # 1. 网络编程基础** **1.1 网络基础知识** 网络是连接计算机和设备的系统,允许它们交换数据和资源。它由节点(计算机、服务器、路由器等)和连接它们的数据链路组成。网络可以是局域网(LAN)、广域网(WAN)或互联网。 **1.2 TCP/IP协议栈** TCP/IP协议栈是一组通信协议,用于在网络上传输数据。它分为四层: * **链路层:**处理物理连接和数据传输。 * **网络层:
recommend-type

matlab画矢量分布图

在MATLAB中,绘制矢量分布图通常用于可视化二维或三维空间中的向量场,这有助于理解力场、风速、磁场等现象的分布情况。以下是使用MATLAB创建矢量分布图的基本步骤: 1. 准备数据:首先,你需要有一个表示向量场的矩阵,其中每个元素代表一个点的x、y坐标及其对应的矢量分量。 2. 使用`quiver`函数:MATLAB提供了一个内置函数`quiver(x, y, U, V)`,其中`x`和`y`是网格的行和列坐标,`U`和`V`是对应于每个网格点的x和y分量的向量值。 ```matlab [X, Y] = meshgrid(x, y); % 创建网格 quiver(X,