8.UART的配置寄存器(32位)地址为0x10000000,8.其格式如下:31 11 10 2 1 0 A B C 写出将B域置为0x1F的代码片断
时间: 2024-02-10 09:13:39 浏览: 154
将B域置为0x1F需要将第8位到第2位的值全部置为1,第1位的值置为0。可以使用或运算对B域进行设置,代码片段如下:
```
#define UART_CONFIG_REG_ADDR 0x10000000
uint32_t uart_config_reg = *((volatile uint32_t *)UART_CONFIG_REG_ADDR);
uart_config_reg |= 0x7E; // 将第8位到第2位的值全部置为1
uart_config_reg &= ~0x02; // 将第1位的值置为0
*((volatile uint32_t *)UART_CONFIG_REG_ADDR) = uart_config_reg;
```
其中,`0x7E` 的二进制表示为 `01111110`,表示将第8位到第2位的值全部置为1;而 `~0x02` 的二进制表示为 `11111101`,表示将第1位的值置为0。
相关问题
8.UART的配置寄存器(32位)地址为0x10000000,其格式如下: 31 11 10 2 1 0 A B C 写出将B域置为0x1F的代码片断。
可以使用位操作(Bitwise Operation)将B域设置为0x1F,具体代码如下:
```
// 假设使用指针 uart_reg 指向 UART 配置寄存器的地址
*(uart_reg + 1) |= (0x1F << 2);
```
解释一下代码:
- `uart_reg` 是指向 UART 配置寄存器的指针,可以通过指针运算来访问寄存器。
- `*(uart_reg + 1)` 表示访问寄存器的第2个32位字,也就是 B 域所在的字。
- `|=` 表示按位或赋值,将 B 域的值设置为 0x1F。
- `(0x1F << 2)` 表示将 0x1F 左移2位,得到 B 域的值。因为 B 域从第2位开始,所以需要左移2位。
采用stm32单片机读取芯片温度,采用hal开发,具体步骤如下: 0,传感器写地址为0xDA,读地址为0xDB 1,初始化,写传感器地址为0xDA,向寄存器0xA5写0x01输出校准数据,向寄存器0x30写0x08开始信号采集。 2,检查数据可用状态标志,发送写传感器地址为0xDA,发送寄存器地址0x30,发送读传感器地址0xDB,读取寄存器0X30的Sco的值,1开始数据采集,结束后回到0(休眠模式除外) 3,读取温度数据,发送传感器地址0xDA,发送寄存器地址0x09,读地址为0xDB,读取寄存器0x09和0xDA中内容,尝试写出相关代码 4,温度是一个二进制16位的数temperature,温度等于temperature*(1/256)℃。 5,通过串口1打印输出。
好的,以下是采用STM32单片机读取芯片温度的HAL代码实现:
```c
#include "stm32f4xx_hal.h"
#include <stdio.h>
#define SENSOR_WRITE_ADDR 0xDA
#define SENSOR_READ_ADDR 0xDB
#define REG_CALIB_DATA 0xA5
#define REG_START_CONV 0x30
#define REG_CONV_STATUS 0x30
#define REG_TEMP_DATA 0x09
UART_HandleTypeDef huart1;
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_USART1_UART_Init(void);
void sensor_write(uint8_t reg, uint8_t data) {
HAL_I2C_Mem_Write(&hi2c1, SENSOR_WRITE_ADDR, reg, 1, &data, 1, HAL_MAX_DELAY);
}
uint8_t sensor_read(uint8_t reg) {
uint8_t data;
HAL_I2C_Mem_Read(&hi2c1, SENSOR_WRITE_ADDR, reg, 1, &data, 1, HAL_MAX_DELAY);
return data;
}
int main(void) {
HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
MX_USART1_UART_Init();
MX_I2C1_Init();
uint8_t calib_data = 0x01; // calibration data for start conversion
sensor_write(REG_CALIB_DATA, calib_data);
uint8_t start_conv = 0x08; // start conversion
sensor_write(REG_START_CONV, start_conv);
while (1) {
uint8_t conv_status = sensor_read(REG_CONV_STATUS);
if (conv_status & 0x01) { // check if data is available
uint8_t temp_data[2];
HAL_I2C_Mem_Read(&hi2c1, SENSOR_WRITE_ADDR, REG_TEMP_DATA, 1, temp_data, 2, HAL_MAX_DELAY);
uint16_t temperature = (temp_data[0] << 8) | temp_data[1];
float temp_celsius = temperature * (1.0 / 256.0);
char buf[32];
sprintf(buf, "Temperature: %.2f C\r\n", temp_celsius);
HAL_UART_Transmit(&huart1, (uint8_t*)buf, strlen(buf), HAL_MAX_DELAY);
HAL_Delay(1000); // wait 1 second before reading again
}
}
}
void SystemClock_Config(void) {
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_BYPASS;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 8;
RCC_OscInitStruct.PLL.PLLN = 336;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 7;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK) {
Error_Handler();
}
}
static void MX_USART1_UART_Init(void) {
huart1.Instance = USART1;
huart1.Init.BaudRate = 115200;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart1) != HAL_OK) {
Error_Handler();
}
}
static void MX_GPIO_Init(void) {
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
GPIO_InitTypeDef GPIO_InitStruct = {0};
GPIO_InitStruct.Pin = GPIO_PIN_9 | GPIO_PIN_10;
GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF7_USART1;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
void Error_Handler(void) {
__disable_irq();
while (1) {}
}
#ifdef USE_FULL_ASSERT
void assert_failed(uint8_t *file, uint32_t line) {
}
#endif
```
这份代码采用了HAL库,使用了I2C和UART通信。在主函数中,首先进行了传感器的初始化,然后在循环中不断检查数据是否可用,如果可用则读取温度数据并通过串口1打印输出。请注意修改代码中的引脚配置和时钟配置,以适配您的硬件平台。
阅读全文