用pytorch框架写vgg16猫狗识别训练并打印出其精度和损失函数图像,并使用GPU编写

时间: 2024-05-14 18:16:00 浏览: 13
好的,以下是使用Pytorch框架编写的VGG16猫狗识别模型的代码。 首先,需要导入必要的库和模块。 ```python import torch import torch.nn as nn import torch.optim as optim import torch.utils.data as data import torchvision from torchvision import transforms from torch.utils.data import DataLoader import matplotlib.pyplot as plt ``` 接下来,定义网络结构。这里我们使用VGG16作为基础模型,在最后添加一个全连接层用于二分类。 ```python class VGG16(nn.Module): def __init__(self): super(VGG16, self).__init__() self.features = nn.Sequential( nn.Conv2d(3, 64, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(64, 64, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(64, 128, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(128, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(256, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), ) self.classifier = nn.Sequential( nn.Linear(512 * 7 * 7, 4096), nn.ReLU(inplace=True), nn.Dropout(p=0.5), nn.Linear(4096, 4096), nn.ReLU(inplace=True), nn.Dropout(p=0.5), nn.Linear(4096, 2), ) def forward(self, x): x = self.features(x) x = x.view(x.size(0), -1) x = self.classifier(x) return x ``` 然后,定义训练函数。 ```python def train(model, train_loader, criterion, optimizer): model.train() train_loss = 0.0 train_acc = 0.0 for i, (inputs, labels) in enumerate(train_loader): inputs = inputs.cuda() labels = labels.cuda() optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() train_loss += loss.item() * inputs.size(0) _, preds = torch.max(outputs, 1) train_acc += torch.sum(preds == labels.data) train_loss = train_loss / len(train_loader.dataset) train_acc = train_acc.double() / len(train_loader.dataset) return train_loss, train_acc ``` 定义测试函数。 ```python def test(model, test_loader, criterion): model.eval() test_loss = 0.0 test_acc = 0.0 with torch.no_grad(): for inputs, labels in test_loader: inputs = inputs.cuda() labels = labels.cuda() outputs = model(inputs) loss = criterion(outputs, labels) test_loss += loss.item() * inputs.size(0) _, preds = torch.max(outputs, 1) test_acc += torch.sum(preds == labels.data) test_loss = test_loss / len(test_loader.dataset) test_acc = test_acc.double() / len(test_loader.dataset) return test_loss, test_acc ``` 接下来,加载数据集。 ```python train_transforms = transforms.Compose([ transforms.Resize((224, 224)), transforms.RandomHorizontalFlip(), transforms.RandomRotation(10), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) test_transforms = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) train_set = torchvision.datasets.ImageFolder(root='train/', transform=train_transforms) test_set = torchvision.datasets.ImageFolder(root='test/', transform=test_transforms) train_loader = DataLoader(train_set, batch_size=32, shuffle=True) test_loader = DataLoader(test_set, batch_size=32, shuffle=False) ``` 然后,定义损失函数和优化器。 ```python criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9) ``` 最后,训练模型并打印出其精度和损失函数图像。 ```python num_epochs = 20 model = VGG16().cuda() train_loss_list = [] train_acc_list = [] test_loss_list = [] test_acc_list = [] for epoch in range(num_epochs): train_loss, train_acc = train(model, train_loader, criterion, optimizer) test_loss, test_acc = test(model, test_loader, criterion) train_loss_list.append(train_loss) train_acc_list.append(train_acc) test_loss_list.append(test_loss) test_acc_list.append(test_acc) print("Epoch [{}/{}] Train Loss: {:.4f}, Train Acc: {:.4f}, Test Loss: {:.4f}, Test Acc: {:.4f}".format( epoch + 1, num_epochs, train_loss, train_acc, test_loss, test_acc)) plt.title("Train/Test Loss") plt.plot(train_loss_list, label="Train") plt.plot(test_loss_list, label="Test") plt.legend(loc="upper right") plt.show() plt.title("Train/Test Accuracy") plt.plot(train_acc_list, label="Train") plt.plot(test_acc_list, label="Test") plt.legend(loc="lower right") plt.show() ``` 运行以上代码即可在GPU上训练VGG16猫狗识别模型并打印出其精度和损失函数图像。

相关推荐

最新推荐

recommend-type

利用PyTorch实现VGG16教程

主要介绍了利用PyTorch实现VGG16教程,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

用Pytorch训练CNN(数据集MNIST,使用GPU的方法)

今天小编就为大家分享一篇用Pytorch训练CNN(数据集MNIST,使用GPU的方法),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

Pytorch 的损失函数Loss function使用详解

今天小编就为大家分享一篇Pytorch 的损失函数Loss function使用详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

pytorch使用horovod多gpu训练的实现

主要介绍了pytorch使用horovod多gpu训练的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
recommend-type

pytorch获取vgg16-feature层输出的例子

今天小编就为大家分享一篇pytorch获取vgg16-feature层输出的例子,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。