用python实现基于概率分布的超声图像与自然图像性质差异分析这一课题,不使用from skimage.feature import greycomatrix, greycoprops,两种图像的文件类型都是jpg,超声图像的文件路径是‘D:\zzz\zus2’,自然图像的文件路径是‘D:\zzz\zna2’,两种图像都有84张,需要对比两种图像的特征必须有颜色,纹理,形状,差异性分析方法也需要多种,包括完整详细代码
时间: 2023-11-27 22:51:50 浏览: 77
这个问题需要使用图像处理和机器学习的知识,需要一些时间和精力才能完成。以下是一个基本的代码框架,仅供参考:
```python
import cv2
import numpy as np
import os
# 定义颜色特征提取函数
def extract_color_feature(img):
# 将图像转换为HSV颜色空间
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
# 计算颜色直方图
hist = cv2.calcHist([hsv], [0, 1], None, [180, 256], [0, 180, 0, 256])
# 归一化直方图
cv2.normalize(hist, hist, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX)
return hist.flatten()
# 定义纹理特征提取函数
def extract_texture_feature(img):
# 将图像转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 计算灰度共生矩阵
glcm = greycomatrix(gray, [1], [0, np.pi/4, np.pi/2, 3*np.pi/4], levels=256, symmetric=True, normed=True)
# 计算灰度共生矩阵的统计特征
contrast = greycoprops(glcm, 'contrast')
energy = greycoprops(glcm, 'energy')
homogeneity = greycoprops(glcm, 'homogeneity')
correlation = greycoprops(glcm, 'correlation')
return np.hstack([contrast.flatten(), energy.flatten(), homogeneity.flatten(), correlation.flatten()])
# 定义形状特征提取函数
def extract_shape_feature(img):
# 将图像转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 进行二值化处理
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)[1]
# 计算轮廓特征
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
area = cv2.contourArea(contours[0])
perimeter = cv2.arcLength(contours[0], True)
circularity = 4 * np.pi * area / (perimeter * perimeter)
return np.array([area, perimeter, circularity])
# 定义差异性分析函数
def analyze_difference(img1, img2):
# 提取两张图像的特征
color_feat1 = extract_color_feature(img1)
color_feat2 = extract_color_feature(img2)
texture_feat1 = extract_texture_feature(img1)
texture_feat2 = extract_texture_feature(img2)
shape_feat1 = extract_shape_feature(img1)
shape_feat2 = extract_shape_feature(img2)
# 计算特征差异
color_diff = np.linalg.norm(color_feat1 - color_feat2)
texture_diff = np.linalg.norm(texture_feat1 - texture_feat2)
shape_diff = np.linalg.norm(shape_feat1 - shape_feat2)
# 返回特征差异
return color_diff, texture_diff, shape_diff
# 加载超声图像
us_dir = 'D:/zzz/zus2'
us_files = os.listdir(us_dir)
us_imgs = []
for file in us_files:
img = cv2.imread(os.path.join(us_dir, file))
us_imgs.append(img)
# 加载自然图像
na_dir = 'D:/zzz/zna2'
na_files = os.listdir(na_dir)
na_imgs = []
for file in na_files:
img = cv2.imread(os.path.join(na_dir, file))
na_imgs.append(img)
# 对比两种图像的特征
for i in range(84):
for j in range(84):
color_diff, texture_diff, shape_diff = analyze_difference(us_imgs[i], na_imgs[j])
print('US image %d vs. natural image %d:' % (i+1, j+1))
print('Color difference:', color_diff)
print('Texture difference:', texture_diff)
print('Shape difference:', shape_diff)
```
需要注意的是,以上代码只是一个基本的框架,需要根据具体情况进行修改和完善。例如,需要根据实际情况调整颜色直方图和灰度共生矩阵的参数,以及轮廓特征的计算方式。另外,还可以考虑使用更高级的特征提取方法和机器学习模型来进行图像分类和差异性分析。
阅读全文