写一下XGBoost-LightGBM-ConvLSTM代码
时间: 2023-03-05 11:57:27 浏览: 135
XGBoost算法使用代码示例
XGBoost、LightGBM和ConvLSTM都是机器学习中常用的算法,可以用于不同类型的问题。下面是一个简单的代码示例,展示如何使用XGBoost、LightGBM和ConvLSTM来解决时间序列预测问题。假设我们要预测未来7天内的温度变化,我们可以使用过去14天的温度数据作为输入。
首先,我们需要导入必要的库:
```python
import numpy as np
import pandas as pd
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import StandardScaler
from xgboost import XGBRegressor
import lightgbm as lgb
from keras.models import Sequential
from keras.layers import ConvLSTM2D, Flatten, Dense
```
接下来,我们可以加载数据集并进行一些预处理。假设我们的数据集包含温度数据和日期时间戳,我们需要将它们转换为适合模型输入的格式。
```python
# 加载数据集
df = pd.read_csv('temperature_data.csv', parse_dates=['timestamp'])
# 将日期时间戳转换为数字格式
df['timestamp'] = pd.to_numeric(df['timestamp'])
# 对温度数据进行归一化
scaler = StandardScaler()
df['temperature'] = scaler.fit_transform(df['temperature'].values.reshape(-1, 1))
# 创建滑动窗口序列
sequence_length = 14
sequence_cols = ['temperature']
result = []
for index in range(len(df) - sequence_length):
result.append(df[sequence_cols].values[index: index + sequence_length])
# 转换为NumPy数组
result = np.array(result)
# 划分训练集和测试集
row = round(0.9 * result.shape[0])
train = result[:int(row), :]
x_train = train[:, :-1]
y_train = train[:, -1]
x_test = result[int(row):, :-1]
y_test = result[int(row):, -1]
```
接下来,我们可以使用XGBoost来训练模型并进行预测。
```python
# 训练XGBoost模型
xgb_model = XGBRegressor(n_estimators=1000)
xgb_model.fit(x_train.reshape((x_train.shape[0], x_train.shape[1])), y_train)
# 进行预测
y_pred_xgb = xgb_model.predict(x_test.reshape((x_test.shape[0], x_test.shape[1])))
```
然后,我们可以使用LightGBM来训练模型并进行预测。
```python
# 训练LightGBM模型
lgb_model = lgb.LGBMRegressor(n_estimators=1000)
lgb_model.fit(x_train.reshape((x_train.shape[0], x_train.shape[1])), y_train)
# 进行预测
y_pred_lgb = lgb_model.predict(x_test.reshape((x_test.shape[0], x_test.shape[1])))
```
最后,我们可以使用ConvLSTM来训练模型并进行预测。
```python
# 训练ConvLSTM模型
seq = Sequential()
seq.add(ConvLSTM2D(filters=64, kernel_size=(1, 3), input_shape=(None, 1, sequence_length, 1), padding='same',
阅读全文